We present Holistic Cube Analysis (HoCA), a framework that augments the capabilities of relational queries for data insights. We first define AbstractCube, a data type defined as a function from RegionFeatures space to relational tables. AbstractCube provides a logical form of data for HoCA operators and their compositions to operate on to analyze the data. This function-as-data modeling allows us to simultaneously capture a space of non-uniform tables on the co-domain of the function, and region space structure on the domain of the function. We describe two HoCA operators, cube crawling and cube join, which are cube-to-cube transformations (i.e., higher-order functions). Cube crawling explores a region subspace, and outputs a cube mapping regions to signal vectors. Cube join, in turn, allows users to meld information in different cubes, which is critical for composition. The cube crawling interface introduces two novel features: (1) Region Analysis Models (RAMs), which allows one to program and organize analysis on a set of data features into a module. (2) Multi-Model Crawling, which allows one to apply multiple models, potentially on different feature sets, during crawling. These two features, together with cube join and a rich RAM library, allows us to construct succinct HoCA programs to capture a wide variety of data-insight problems in system monitoring, experimentation analysis, and business intelligence. HoCA poses a rich algorithmic design space, such as optimizing crawling performance leveraging region space structure, optimizing cube join performance, and physical designs of cubes. We describe several cube crawling implementations leveraging different foundations (an in-house relational query engine, and Apache Beam), and evaluate their performance characteristics. Finally, we discuss avenues in extending the framework, such as devising more useful HoCA operators.


翻译:暂无翻译

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员