In this paper, we explore the theory and expand upon the practice of fitness landscape analysis for optimization problems over the space of permutations. Many of the computational and analytical tools for fitness landscape analysis, such as fitness distance correlation, require identifying a distance metric for measuring the similarity of different solutions to the problem. We begin with a survey of the available distance metrics for permutations, and then use principal component analysis to classify these metrics. The result of this analysis aligns with existing classifications of permutation problem types produced through less formal means, including the A-permutation, R-permutation, and P-permutation types, which classifies problems by whether absolute position of permutation elements, relative positions of elements, or general precedence of pairs of elements, is the dominant influence over solution fitness. Additionally, the formal analysis identifies subtypes within these problem categories. We see that the classification can assist in identifying appropriate metrics based on optimization problem feature for use in fitness landscape analysis. Using optimization problems of each class, we also demonstrate how the classification scheme can subsequently inform the choice of mutation operator within an evolutionary algorithm. From this, we present a classification of a variety of mutation operators as a counterpart to that of the metrics. Our implementations of the permutation metrics, permutation mutation operators, and associated evolutionary algorithm, are available in a pair of open source Java libraries. All of the code necessary to recreate our analysis and experimental results are also available as open source.


翻译:在本文中,我们探索了这一理论,并扩展了健身景观分析的做法,以优化在排列空间上的问题。许多健身景观分析的计算和分析工具,如健身距离相关性,都需要为衡量问题不同解决办法的相似性而确定距离度;我们首先调查了可供调用的不同解决办法的距离度度,然后利用主要组成部分分析对这些计量进行分类。这一分析的结果与通过较不正式的方法,包括A-变异、R-变异和P-变异类型,生成的调异问题类型的现有分类方法相一致。许多计算和分析工具,例如健身景观分析的计算和分析工具,需要确定调异元素的绝对位置、元素的相对位置或成对成对元素的一般优先位置,这是衡量问题的相似性的主要影响。此外,正式分析还查明了这些问题类别中的子类型。我们认为,这种分类有助于根据最佳问题特征确定适当的计量方法,用于分析。利用每个类别的优化问题,我们还演示了各种分类方法,从而能够随后在必要的演化算中为选择变异操作者提供选择。从绝对变动要素到我们所有的变异性演算操作者,这是我们所有变变的变式演算法的版本,我们作为指数的代算操作者,每个变式的变变式的变式操作者作为指数的变式的版本,每个版本的演算的演算。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员