Factual knowledge graphs (KGs) such as DBpedia and Wikidata have served as part of various downstream tasks and are also widely adopted by artificial intelligence research communities as benchmark datasets. However, we found these KGs to be surprisingly noisy. In this study, we question the quality of these KGs, where the typing error rate is estimated to be 27% for coarse-grained types on average, and even 73% for certain fine-grained types. In pursuit of solutions, we propose an active typing error detection algorithm that maximizes the utilization of both gold and noisy labels. We also comprehensively discuss and compare unsupervised, semi-supervised, and supervised paradigms to deal with typing errors in factual KGs. The outcomes of this study provide guidelines for researchers to use noisy factual KGs. To help practitioners deploy the techniques and conduct further research, we published our code and data.


翻译:DBpedia和Wikidata等事实知识图表(KGs)是各种下游任务的一部分,也被人工智能研究界广泛采用,作为基准数据集。然而,我们发现这些KGs非常吵闹。在本研究中,我们质疑这些KGs的质量,在这种质量中,粗皮类的输入错误率估计平均为27%,某些细细微种类的输入错误率甚至为73%。为了寻求解决办法,我们建议采用一种积极的输入错误检测算法,最大限度地利用黄金和吵闹标签。我们还全面讨论和比较未经监督、半监督和监督的范式,以处理事实KGs中的输入错误。这项研究的结果为研究人员使用吵闹的事实KGs提供了指南。为了帮助从业人员部署技术和进行进一步的研究,我们公布了我们的代码和数据。

0
下载
关闭预览

相关内容

DBpedia 是一个很特殊的语义网应用范例,它从维基百科(Wikipedia)的词条里撷取出结构化的资料,以强化维基百科的搜寻功能,并将其他资料集连结至维基百科。
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
106+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
17篇知识图谱Knowledge Graphs论文 @AAAI2020
专知会员服务
171+阅读 · 2020年2月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
4+阅读 · 2018年11月26日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
14+阅读 · 2019年11月26日
Arxiv
6+阅读 · 2019年9月4日
Arxiv
4+阅读 · 2018年11月26日
Arxiv
11+阅读 · 2018年9月28日
Top
微信扫码咨询专知VIP会员