Leukemia (blood cancer) is an unusual spread of White Blood Cells or Leukocytes (WBCs) in the bone marrow and blood. Pathologists can diagnose leukemia by looking at a person's blood sample under a microscope. They identify and categorize leukemia by counting various blood cells and morphological features. This technique is time-consuming for the prediction of leukemia. The pathologist's professional skills and experiences may be affecting this procedure, too. In computer vision, traditional machine learning and deep learning techniques are practical roadmaps that increase the accuracy and speed in diagnosing and classifying medical images such as microscopic blood cells. This paper provides a comprehensive analysis of the detection and classification of acute leukemia and WBCs in the microscopic blood cells. First, we have divided the previous works into six categories based on the output of the models. Then, we describe various steps of detection and classification of acute leukemia and WBCs, including Data Augmentation, Preprocessing, Segmentation, Feature Extraction, Feature Selection (Reduction), Classification, and focus on classification step in the methods. Finally, we divide automated detection and classification of acute leukemia and WBCs into three categories, including traditional, Deep Neural Network (DNN), and mixture (traditional and DNN) methods based on the type of classifier in the classification step and analyze them. The results of this study show that in the diagnosis and classification of acute leukemia and WBCs, the Support Vector Machine (SVM) classifier in traditional machine learning models and Convolutional Neural Network (CNN) classifier in deep learning models have widely employed. The performance metrics of the models that use these classifiers compared to the others model are higher.
翻译:白血病(血癌)是白血球细胞或白血病血清(白血病)在骨髓和血液中的异常传播; 病理学家可以通过显微镜观察一个人的血样来诊断白血病; 他们通过计算各种血细胞和形态特征来辨别和分类白血病; 这一技术对白血病的预测耗费时间。 病理学家的专业技能和经验也可能影响这一程序。 在计算机视觉中, 传统机器学习和深层次学习技术是实用的路线图, 提高诊断和分类医学图像的准确性和速度, 如微镜血液细胞。 病理学家可以通过显微血病和白血病细胞细胞的血样来诊断和分类。 首先,我们根据模型的输出结果将先前的作品分成六类。 然后, 我们描述急性白血病和白血病的模型和白血病的检测和分类步骤,包括数据变异性分类、预处理、分解、精度提取、精度筛选、精选取等医学图像。 本文对急性血细胞的诊断模型进行全面分析分析分析, 网络的分类和精度分析, 以及血液分类方法的分类,包括传统血解、血液的分类、血液的分类、血液的分类、血液的分类,以及血液的分类方法,以及血液的分解、血液的分解、血液的分解的分解、血液的分解、血液的分解方法,以及血液的分解、血液的分解、血液的分解方法。 最后的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解的分解的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解、血液的分解的分解</s>