Exact computation of the partition function is known to be intractable, necessitating approximate inference techniques. Existing methods for approximate inference are slow to converge for many benchmarks. The control of accuracy-complexity trade-off is also non-trivial in many of these methods. We propose a novel incremental build-infer-approximate (IBIA) framework for approximate inference that addresses these issues. In this framework, the probabilistic graphical model is converted into a sequence of clique tree forests (SCTF) with bounded clique sizes. We show that the SCTF can be used to efficiently compute the partition function. We propose two new algorithms which are used to construct the SCTF and prove the correctness of both. The first is an algorithm for incremental construction of CTFs that is guaranteed to give a valid CTF with bounded clique sizes and the second is an approximation algorithm that takes a calibrated CTF as input and yields a valid and calibrated CTF with reduced clique sizes as the output. We have evaluated our method using several benchmark sets from recent UAI competitions and our results show good accuracies with competitive runtimes.


翻译:精确计算分区函数被认为是不可解的,因此需要近似推断技术。现有的近似推断方法在许多基准测试中收敛速度缓慢。控制精度-复杂度平衡在许多这些方法中也是非常棘手的。我们提出了一个新颖的增量构建推理-近似 (IBIA) 框架,用于近似推断,解决了这些问题。在这个框架中,概率图模型被转换成具有有界团大小的一系列团树森林 (SCTF)。我们表明,SCTF 可以用于高效地计算分区函数。我们提出了两个新算法,用于构建 SCTF,并证明了它们的正确性。第一个算法是用于增量构建 CTF 的算法,保证给出一个具有有界团大小的有效 CTF。第二个算法是一种近似算法,它以校准的 CTF 作为输入,将一组具有减小团大小的有效和校准的 CTF 作为输出。我们使用最近的 UAI 竞赛中的几组基准集来评估我们的方法,结果显示了良好的精度和有竞争力的运行时间。

0
下载
关闭预览

相关内容

当精确的学习和推论在计算上难以解决时,近似推断方法可以通过权衡计算时间来提高准确性,从而从大数据中学习现实模型。
【CTH博士论文】基于强化学习的自动驾驶决策,149页pdf
专知会员服务
57+阅读 · 2023年2月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月29日
VIP会员
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员