Sampling from high dimensional distributions and volume approximation of convex bodies are fundamental operations that appear in optimization, finance, engineering, artificial intelligence and machine learning. In this paper we present volesti, an R package that provides efficient, scalable algorithms for volume estimation, uniform and Gaussian sampling from convex polytopes. volesti scales to hundreds of dimensions, handles efficiently three different types of polyhedra and provides non existing sampling routines to R. We demonstrate the power of volesti by solving several challenging problems using the R language.
翻译:从高维分布和卷状体体体体积近似值采集样本,是优化、金融、工程、人工智能和机器学习方面出现的基本操作。在本文件中,我们展示了Volesti,这是一个R包,为量估提供高效、可扩展的算法,从卷状多面体进行统一和高西亚取样,从卷状尺度到数百维度,高效处理三种不同类型的聚赫德拉,并向R提供非现有取样常规。我们通过用R语言解决若干具有挑战性的问题,展示了Volesti的力量。