Inverse problems involving partial differential equations are widely used in science and engineering. Although such problems are generally ill-posed, different regularisation approaches have been developed to ameliorate this problem. Among them is the Bayesian formulation, where a prior probability measure is placed on the quantity of interest. The resulting posterior probability measure is usually analytically intractable. The Markov Chain Monte Carlo (MCMC) method has been the go-to method for sampling from those posterior measures. MCMC is computationally infeasible for large-scale problems that arise in engineering practice. Lately, Variational Bayes (VB) has been recognised as a more computationally tractable method for Bayesian inference, approximating a Bayesian posterior distribution with a simpler trial distribution by solving an optimisation problem. In this work, we argue, through an empirical assessment, that VB methods are a flexible, fast, and scalable alternative to MCMC for this class of problems. We propose a natural choice of a family of Gaussian trial distributions parametrised by precision matrices, thus taking advantage of the inherent sparsity of the inverse problem encoded in the discretisation of the problem. We utilize stochastic optimisation to efficiently estimate the variational objective and assess not only the error in the solution mean but also the ability to quantify the uncertainty of the estimate. We test this on PDEs based on the Poisson equation in 1D and 2D, and we will make our Tensorflow implementation publicly available.


翻译:在科学和工程中广泛使用部分差异方程式的反面问题。虽然这些问题一般不易处理,但已经制定了不同的常规化方法来缓解这一问题。其中之一是巴伊西亚配方,事先对利息量进行概率测量。由此产生的后继概率测量通常难以分析。马可夫连锁公司蒙特卡洛(MCMC)方法是从这些事后措施中取样的捷径方法。MCMCMC在计算上无法解决工程实践中出现的大规模问题。最近,VB(VB)被确认为一种在计算上更易分析的巴伊西亚发价方法,对Bayesian后代配方进行接近的概率测量,通过解决优化问题来更简单的试验分布。在这项工作中,我们通过经验评估认为,VB方法对于这类问题来说是一个灵活、快速和可扩缩的替代方法。我们建议自然选择一个以精准基基基基基基基基基底为基底的加比值分配的基数(VBB)系统,作为较易的计算方法。我们还利用了在精确基基基基基基基基基基底的精确度模型中进行精确度的精确度的精确度的精确度的精确度和精确度的精确度的精确度的精确度的精确度评估能力,从而在精确度的精确度上,从而将本性估算的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确度上,我们将利用了对2的精确度的精确度的精确度的精确度的精确度的精确度的精确度的精确性评估的精确度的精确度的精确度的精确度的精确性评估问题的精确度的精确性评估的精确度的精确度的精确度的精确度的精确度的精确性上,我们的精确性评估的精确度的精确度的精确性评估的精确性估算的精确性,从而的精确性评估的精确性评估的精确性,我们的精确性对的精确性运用的精确性评估的精确性运用的精确性运用的精确性运用的精确性运用的精确性运用的精确性运用的精确性运用的精确性运用的精确性运用的精确性评估的精确性运用的精确性评估的精确性评估的精确性进行的精确性对的精确性对的精确性进行的精确性

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月15日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员