Machine learning models work better when curated features are provided to them. Feature engineering methods have been usually used as a preprocessing step to obtain or build a proper feature set. In late years, autoencoders (a specific type of symmetrical neural network) have been widely used to perform representation learning, proving their competitiveness against classical feature engineering algorithms. The main obstacle in the use of autoencoders is finding a good architecture, a process that most experts confront manually. An automated autoencoder architecture search procedure, based on evolutionary methods, is proposed in this paper. The methodology is tested against nine heterogeneous data sets. The obtained results show the ability of this approach to find better architectures, able to concentrate most of the useful information in a minimized coding, in a reduced time.
翻译:机械学习模型在向它们提供包装功能时效果更好。 特性工程方法通常被用作获得或建立适当功能的预处理步骤。 几年后,自动电解器(一种特定类型的对称神经网络)被广泛用于进行代表性学习,证明它们与古典特征工程算法相比具有竞争力。 使用自动电解器的主要障碍是找到一个良好的架构,这是大多数专家手动面对的一个过程。 本文提出了基于进化方法的自动自动自动电解器结构搜索程序。 方法用9套不同数据集进行测试。 所获得的结果显示,这种方法有能力找到更好的架构,能够在较短的时间内将大部分有用信息集中到最起码的编码中。