The discrete gradient structure and the positive definiteness of discrete fractional integrals or derivatives are fundamental to the numerical stability in long-time simulation of nonlinear integro-differential models. We build up a discrete gradient structure for a class of second-order variable-step approximations of fractional Riemann-Liouville integral and fractional Caputo derivative. Then certain variational energy dissipation laws at discrete levels of the corresponding variable-step Crank-Nicolson type methods are established for time-fractional Allen-Cahn and time-fractional Klein-Gordon type models. They are shown to be asymptotically compatible with the associated energy laws of the classical Allen-Cahn and Klein-Gordon equations in the associated fractional order limits.Numerical examples together with an adaptive time-stepping procedure are provided to demonstrate the effectiveness of our second-order methods.
翻译:离散梯度结构以及离散分块集成物或衍生物的积极确定性,对于非线性内分形模型的长期模拟数字稳定性至关重要。我们为分数Riemann-Liouville的分数性里曼-Liouville集成和分数式Caputo衍生物的第二阶级可分步近似建立一个离散梯度结构。然后,为时间错乱的Allen-Cahn和定时克莱因-Gordon型模型在离散水平上制定一定的变异能量消散法,以证明我们第二阶方法的有效性。