In spatial statistics, a common objective is to predict the values of a spatial process at unobserved locations by exploiting spatial dependence. In geostatistics, Kriging provides the best linear unbiased predictor using covariance functions and is often associated with Gaussian processes. However, when considering non-linear prediction for non-Gaussian and categorical data, the Kriging prediction is not necessarily optimal, and the associated variance is often overly optimistic. We propose to use deep neural networks (DNNs) for spatial prediction. Although DNNs are widely used for general classification and prediction, they have not been studied thoroughly for data with spatial dependence. In this work, we propose a novel neural network structure for spatial prediction by adding an embedding layer of spatial coordinates with basis functions. We show in theory that the proposed DeepKriging method has multiple advantages over Kriging and classical DNNs only with spatial coordinates as features. We also provide density prediction for uncertainty quantification without any distributional assumption and apply the method to PM$_{2.5}$ concentrations across the continental United States.


翻译:在空间统计中,一个共同目标是通过利用空间依赖性来预测未观测地点的空间过程值。在地理统计学中,克里金利用共同变量功能提供最佳线性无偏向预测器,而且往往与高斯进程相关。然而,在考虑非高加索和绝对数据的非线性预测时,克里金预测不一定是最佳的,相关差异往往过于乐观。我们提议使用深神经网络进行空间预测。虽然DNN广泛用于一般分类和预测,但并未对具有空间依赖性的数据进行彻底研究。在这项工作中,我们提出一个新的空间预测线性网络结构,在基础功能中增加一个空间坐标嵌入层。我们从理论上表明,拟议的DeepKriging方法具有多种优势,仅比克里金和古典DNNW具有空间坐标特征的多重优势。我们还提出在不作任何分配假设的情况下进行不确定性量化的密度预测,并将这种方法应用于整个美国大陆的PM$2.5}的浓度。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月28日
Arxiv
27+阅读 · 2020年6月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年5月31日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
LibRec 每周算法:DeepFM
LibRec智能推荐
14+阅读 · 2017年11月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关论文
Arxiv
0+阅读 · 2021年9月28日
Arxiv
27+阅读 · 2020年6月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Neural Arithmetic Logic Units
Arxiv
5+阅读 · 2018年8月1日
Arxiv
5+阅读 · 2018年5月31日
Top
微信扫码咨询专知VIP会员