We study adaptive sensing of Cox point processes, a widely used model from spatial statistics. We introduce three tasks: maximization of captured events, search for the maximum of the intensity function and learning level sets of the intensity function. We model the intensity function as a sample from a truncated Gaussian process, represented in a specially constructed positive basis. In this basis, the positivity constraint on the intensity function has a simple form. We show how an minimal description positive basis can be adapted to the covariance kernel, non-stationarity and make connections to common positive bases from prior works. Our adaptive sensing algorithms use Langevin dynamics and are based on posterior sampling (\textsc{Cox-Thompson}) and top-two posterior sampling (\textsc{Top2}) principles. With latter, the difference between samples serves as a surrogate to the uncertainty. We demonstrate the approach using examples from environmental monitoring and crime rate modeling, and compare it to the classical Bayesian experimental design approach.
翻译:我们研究考克斯点过程的适应性感测,这是空间统计中广泛使用的模型。我们引入了三项任务:将所捕捉的事件最大化,寻找强度函数的最大强度函数和强度函数的学习水平组。我们将强度函数作为从短短的高山过程的样本进行模型,以特别构建的积极基础为代表。在这个基础上,强度函数的假设性制约有一个简单的形式。我们展示了如何将最小描述的积极基础适应于共性内核、非静态和与先前工作中的共同正基点进行连接。我们的适应性感测算法使用朗埃文动力,并基于远端取样(\ textsc{Cox-Thompson})和前2个后端取样(\ textsc{Top2})原则。在后一种基础上,样品之间的差异可以作为不确定性的替代点。我们用环境监测和犯罪率建模的示例来演示方法,并将其与古典巴耶斯实验设计方法进行比较。