Advanced LIGO and Advanced Virgo ground-based interferometers are poised to probe an unprecedentedly large volume of space, enhancing the discovery power of the observations to even new sources of gravitational wave emitters. In this scenario, the development of highly optimized gravitational wave detection algorithms is crucial. We propose a novel layered framework for real-time detection of gravitational waves inspired by speech processing techniques and, in the present implementation, based on a state-of-the-art machine learning approach involving a hybridization of genetic programming and neural networks. The key aspects of the newly proposed framework are: the well structured, layered approach, and the low computational complexity. The paper describes the basic concepts of the framework and the derivation of the first three layers. Even if, in the present implementation, the layers are based on models derived using a machine learning approach, the proposed layered structure has a universal nature. To train and test the models, we used simulated binary black hole gravitational wave waveforms in synthetic Gaussian noise representative of Advanced LIGO sensitivity design. Compared to more complex approaches, such as convolutional neural networks, our framework, even using the simple ground model described in the paper, has only a slightly lower performance, but with a much lower computational complexity and a higher degree of modularity. Furthermore, the underlying exploitation of short-term features makes the results of the new framework virtually independent against time-position of gravitational wave signals, simplifying its future exploitation in real-time multi-layer pipelines for gravitational-wave detection with second generation interferometers.
翻译:LIGO 和 ASG Virgo 地基干涉仪将探索出前所未有的大量空间,从而增强观测发现甚至引力波发射新来源的发现能力。 在这种假设中,开发高度优化引力波探测算法至关重要。 我们提出一个新颖的分层框架,用于实时探测由语音处理技术所启发的引力波,并在目前实施过程中,基于一种最先进的机器学习方法,包括基因波编程和神经网络的混合化。新提议的框架的关键方面是:结构完善的、分层的多波波发射源,以及低计算复杂性。本文描述了框架的基本概念和前三个层次的衍生。即使在当前实施中,这些层次是以模型为基础,使用机器学习方法,拟议的层结构具有普遍性。为了培训和测试模型,我们使用模拟的二进制黑洞重力波波波波,在合成高压结构中,以结构化结构化为结构结构结构结构结构,在高级LIGIG的更高层次感知度结构中,其深度的测测深度框架与较复杂的实地测算方法相比,其深度的测算方法仅以模型,其低的测算,在纸质的模型中,其深度测算方法以模型中,其深度测测算方法以模型的深度测算。