Creating what-if stories requires reasoning about prior statements and possible outcomes of the changed conditions. One can easily generate coherent endings under new conditions, but it would be challenging for current systems to do it with minimal changes to the original story. Therefore, one major challenge is the trade-off between generating a logical story and rewriting with minimal-edits. In this paper, we propose EDUCAT, an editing-based unsupervised approach for counterfactual story rewriting. EDUCAT includes a target position detection strategy based on estimating causal effects of the what-if conditions, which keeps the causal invariant parts of the story. EDUCAT then generates the stories under fluency, coherence and minimal-edits constraints. We also propose a new metric to alleviate the shortcomings of current automatic metrics and better evaluate the trade-off. We evaluate EDUCAT on a public counterfactual story rewriting benchmark. Experiments show that EDUCAT achieves the best trade-off over unsupervised SOTA methods according to both automatic and human evaluation. The resources of EDUCAT are available at: https://github.com/jiangjiechen/EDUCAT.
翻译:创建需要对先前声明和条件改变后可能出现的结果进行推理的故事。一个人可以很容易地在新的条件下产生一致的结局,但对于目前的系统来说,在对原始故事进行最低限度的修改后,就很难做到这一点。因此,一个重大挑战是,在产生一个符合逻辑的故事和用最低限度的编辑重写之间作出权衡。在本文中,我们提议EDUCAT,这是一个基于编辑的、未经监督的反事实故事重写方法。EDUCAT包括一个目标定位探测战略,其依据是估计什么条件的因果关系,这种条件维持了故事的因果关系部分。然后,EDUCAT在流畅、一致和最低限度的制约下生成了故事。我们还提出了一个新的衡量标准,以缓解当前自动指标的缺陷,更好地评估交易情况。我们用一个公共反事实故事重写基准对EDUCAT进行了评估。实验表明,EDUCAT在自动和人力评估中都实现了最佳的交换而不是超过不服从的SOTA方法。EDUCAT的资源见: https://github.com/jiangjijijichene/EDCAT。