We consider the problem of counterfactual inference in sequentially designed experiments wherein a collection of $\mathbf{N}$ units each undergo a sequence of interventions for $\mathbf{T}$ time periods, based on policies that sequentially adapt over time. Our goal is counterfactual inference, i.e., estimate what would have happened if alternate policies were used, a problem that is inherently challenging due to the heterogeneity in the outcomes across units and time. To tackle this task, we introduce a suitable latent factor model where the potential outcomes are determined by exogenous unit and time level latent factors. Under suitable conditions, we show that it is possible to estimate the missing (potential) outcomes using a simple variant of nearest neighbors. First, assuming a bilinear latent factor model and allowing for an arbitrary adaptive sampling policy, we establish a distribution-free non-asymptotic guarantee for estimating the missing outcome of any unit at any time; under suitable regularity condition, this guarantee implies that our estimator is consistent. Second, for a generic non-parametric latent factor model, we establish that the estimate for the missing outcome of any unit at time $\mathbf{T}$ satisfies a central limit theorem as $\mathbf{T} \to \infty$, under suitable regularity conditions. Finally, en route to establishing this central limit theorem, we establish a non-asymptotic mean-squared-error bound for the estimate of the missing outcome of any unit at time $\mathbf{T}$. Our work extends the recently growing literature on inference with adaptively collected data by allowing for policies that pool across units, and also compliments the matrix completion literature when the entries are revealed sequentially in an arbitrarily dependent manner based on prior observed data.


翻译:我们考虑的是按顺序设计的实验中的反事实推论问题,在这样的实验中,每个单位收集的 $\ mathbf{N} 单位都会根据时间顺序调整的政策,对美元进行一系列干预。 我们的目标是反事实推论, 也就是说, 估计如果使用替代政策, 就会发生什么, 这个问题本身就具有挑战性, 因为结果在单位和时间之间的差异性。 为了完成这项任务, 我们引入了一个合适的潜在系数模型, 其潜在结果由外源单位和时间水平的不潜在因素来决定。 在合适的条件下, 我们表明, 有可能使用近邻的简单变量来估计缺失( 潜在) 的结果 。 首先, 我们假设双直线潜在系数模型, 并允许任意的调整抽样政策, 我们为随时估算任何单位的缺失结果, 在合适的正常状态状态下, 任何单位的估测值也是一致的 。 第二, 在通用的不直线值的初始值值值值值值值值值值值值, 我们确定一个常规结果, 以错误的直径直径直值 。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员