We introduce Neural Point Light Fields that represent scenes implicitly with a light field living on a sparse point cloud. Combining differentiable volume rendering with learned implicit density representations has made it possible to synthesize photo-realistic images for novel views of small scenes. As neural volumetric rendering methods require dense sampling of the underlying functional scene representation, at hundreds of samples along a ray cast through the volume, they are fundamentally limited to small scenes with the same objects projected to hundreds of training views. Promoting sparse point clouds to neural implicit light fields allows us to represent large scenes effectively with only a single radiance evaluation per ray. These point light fields are a function of the ray direction, and local point feature neighborhood, allowing us to interpolate the light field conditioned training images without dense object coverage and parallax. We assess the proposed method for novel view synthesis on large driving scenarios, where we synthesize realistic unseen views that existing implicit approaches fail to represent. We validate that Neural Point Light Fields make it possible to predict videos along unseen trajectories previously only feasible to generate by explicitly modeling the scene.
翻译:我们引入了隐含地代表光场的神经点光场,这些场景以光场为暗处,生活在微小的云层上。 将不同的体积与已知的隐含密度表示结合起来,使得能够将光-现实图像合成为小场景的新观点。 神经体积表示方法要求对基本功能场景进行密集取样,在成百上千的射线上,在成百上千的射线上,它们基本上限于小场景,同时预测成数百个培训视图。 将微点云作为神经隐含的光场,使我们能够有效地代表大场景,只对每个射线进行单一的光度评价。 这些点光场是射线方向和局部点特征区的一个功能,使我们能够对光场条件的训练图像进行内插,而没有密集的物体覆盖和副作用。 我们评估了大型驾驶场景的新视角合成的拟议方法,在这些场景上,我们综合了现有隐含方法无法代表的现实的看不见的景象。 我们确认,神经点光场使得我们有可能在看不见的轨迹上预测视频,而以前只有明确的模拟才可能生成场景。