The paper concerns the $d$-dimensional stochastic approximation recursion, $$ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) $$ in which $\Phi$ is a geometrically ergodic Markov chain on a general state space $\textsf{X}$ with stationary distribution $\pi$, and $f:\Re^d\times\textsf{X}\to\Re^d$. The main results are established under a version of the Donsker-Varadhan Lyapunov drift condition known as (DV3), and a stability condition for the mean flow with vector field $\bar{f}(\theta)=\textsf{E}[f(\theta,\Phi)]$, with $\Phi\sim\pi$. (i) $\{ \theta_n\}$ is convergent a.s. and in $L_4$ to the unique root $\theta^*$ of $\bar{f}(\theta)$. (ii) A functional CLT is established, as well as the usual one-dimensional CLT for the normalized error. (iii) The CLT holds for the normalized version, $z_n{=:} \sqrt{n} (\theta^{\text{PR}}_n -\theta^*)$, of the averaged parameters, $\theta^{\text{PR}}_n {=:} n^{-1} \sum_{k=1}^n\theta_k$, subject to standard assumptions on the step-size. Moreover, the normalized covariance converges, $$ \lim_{n \to \infty} n \textsf{E} [ {\widetilde{\theta}}^{\text{ PR}}_n ({\widetilde{\theta}}^{\text{ PR}}_n)^T ] = \Sigma_\theta^*,\;\;\;\textit{with $\widetilde{\theta}^{\text{ PR}}_n = \theta^{\text{ PR}}_n -\theta^*$,} $$ where $\Sigma_\theta^*$ is the minimal covariance of Polyak and Ruppert. (iv) An example is given where $f$ and $\bar{f}$ are linear in $\theta$, and the Markov chain $\Phi$ is geometrically ergodic but does not satisfy (DV3). While the algorithm is convergent, the second moment is unbounded: $ \textsf{E} [ \| \theta_n \|^2 ] \to \infty$ as $n\to\infty$.
翻译:暂无翻译