We establish a novel theoretical framework in which weak approximation can be conducted in an iterative and convergent manner for a large class of multivariate inhomogeneous stochastic differential equations with jumps of general time-state dependent intensity. The proposed iteration scheme is built on a sequence of approximate solutions, each of which makes use of a jump time of the underlying dynamics as an information relay point in passing the past on to a previous iteration step to fill in the missing information on the unobserved trajectory ahead. We prove that the proposed iteration scheme is convergent and can be represented in a similar form to Picard iterates under the probability measure with its jump component suppressed. On the basis of the approximate solution at each iteration step, we construct upper and lower bounding functions that are convergent towards the true solution as the iterations proceed. We provide illustrative examples so as to examine our theoretical findings and demonstrate the effectiveness of the proposed theoretical framework and the resulting iterative weak approximation scheme.


翻译:我们建立了一个新颖的理论框架,在这个框架内,弱近似值可以反复和集中的方式对具有一般时态依赖强度的跳跃的一大批多异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异微异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异相异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异异

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月16日
Arxiv
7+阅读 · 2020年6月29日
Arxiv
6+阅读 · 2018年10月3日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员