We study the problem of allocating a set $M$ of $m$ ${indivisible}$ items among $n$ agents in a fair manner. We consider two well-studied notions of fairness: envy-freeness (EF), and envy-freeness up to any good (EFX). While it is known that complete EF allocations do not always exist, it is not known if complete EFX allocations exist besides a few cases. In this work, we reformulate the problem to allow $M$ to be a multiset. Specifically, we introduce a parameter $t$ for the number of distinct ${types}$ of items, and study allocations of multisets that contain items of these $t$ types. We show the following: 1. For arbitrary $n$, $t$, a complete EF allocation exists when agents have distinct additive valuations, and there are ${enough}$ items of each type. 2. For arbitrary $n$, $m$, $t$, a complete EFX allocation exists when agents have additive valuations with identical ${preferences}$. 3. For arbitrary $n$, $m$, and $t\le2$, a complete EFX allocation exists when agents have additive valuations. For 2 and 3, our approach is constructive; we give a polynomial-time algorithm to find a complete EFX allocation.
翻译:我们研究的是以公平的方式在美元代理商之间分配一套美元(美元)的固定项目的问题。我们考虑了两个经过深思熟虑的公平概念:无嫉妒(EF)和任何好(EFX)的无嫉妒(EFX)。虽然人们知道,并非总有完整的EF分配,但除了少数案例之外,还不知道是否有完整的EFX分配;在这项工作中,我们重新划分问题,以便允许多套美元。具体地说,我们为不同项目的数量引入一个参数($)美元(美元类型)的参数,并研究含有这些美元类型的项目的多套分配。我们表明:对于任意的美元(美元),美元(美元),当代理商有不同的添加估价,而且每类项目都有美元(美元)。关于任意的美元(美元),美元(美元),美元(美元),完全的EFX分配,当代理商有完全的(美元)和美元(美元)的折合值时,我们就存在完全的EFX分配。3. 对于任意的美元(美元)分摊,当我们有建设性的代理商的2美元和1美元(美元)。