We study the problem of allocating a set $M$ of $m$ ${indivisible}$ items among $n$ agents in a fair manner. We consider two well-studied notions of fairness: envy-freeness (EF), and envy-freeness up to any good (EFX). While it is known that complete EF allocations do not always exist, it is not known if complete EFX allocations exist besides a few cases. In this work, we reformulate the problem to allow $M$ to be a multiset. Specifically, we introduce a parameter $t$ for the number of distinct ${types}$ of items, and study allocations of multisets that contain items of these $t$ types. We show the following: 1. For arbitrary $n$, $t$, a complete EF allocation exists when agents have distinct additive valuations, and there are ${enough}$ items of each type. 2. For arbitrary $n$, $m$, $t$, a complete EFX allocation exists when agents have additive valuations with identical ${preferences}$. 3. For arbitrary $n$, $m$, and $t\le2$, a complete EFX allocation exists when agents have additive valuations. For 2 and 3, our approach is constructive; we give a polynomial-time algorithm to find a complete EFX allocation.


翻译:我们研究的是以公平的方式在美元代理商之间分配一套美元(美元)的固定项目的问题。我们考虑了两个经过深思熟虑的公平概念:无嫉妒(EF)和任何好(EFX)的无嫉妒(EFX)。虽然人们知道,并非总有完整的EF分配,但除了少数案例之外,还不知道是否有完整的EFX分配;在这项工作中,我们重新划分问题,以便允许多套美元。具体地说,我们为不同项目的数量引入一个参数($)美元(美元类型)的参数,并研究含有这些美元类型的项目的多套分配。我们表明:对于任意的美元(美元),美元(美元),当代理商有不同的添加估价,而且每类项目都有美元(美元)。关于任意的美元(美元),美元(美元),美元(美元),完全的EFX分配,当代理商有完全的(美元)和美元(美元)的折合值时,我们就存在完全的EFX分配。3. 对于任意的美元(美元)分摊,当我们有建设性的代理商的2美元和1美元(美元)。

0
下载
关闭预览

相关内容

在数学中,多重集是对集的概念的修改,与集不同,集对每个元素允许多个实例。 为每个元素提供的实例的正整数个数称为该元素在多重集中的多重性。 结果存在无限多个多重集,它们仅包含元素a和b,但因元素的多样性而变化:(1)集{a,b}仅包含元素a和b,当将{a,b}视为多集时,每个元素的多重性为1;(2)在多重集{a,a,b}中,元素a具有多重性2,而b具有多重性1;(3)在多集{a,a,a,b,b,b}中,a和b都具有多重性3。
专知会员服务
124+阅读 · 2020年9月8日
专知会员服务
40+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员