The optimized quantum $f$-divergences form a family of distinguishability measures that includes the quantum relative entropy and the sandwiched R\'enyi relative quasi-entropy as special cases. In this paper, we establish physically meaningful refinements of the data-processing inequality for the optimized $f$-divergence. In particular, the refinements state that the absolute difference between the optimized $f$-divergence and its channel-processed version is an upper bound on how well one can recover a quantum state acted upon by a quantum channel, whenever the recovery channel is taken to be a rotated Petz recovery channel. Not only do these results lead to physically meaningful refinements of the data-processing inequality for the sandwiched R\'enyi relative entropy, but they also have implications for perfect reversibility (i.e., quantum sufficiency) of the optimized $f$-divergences. Along the way, we improve upon previous physically meaningful refinements of the data-processing inequality for the standard $f$-divergence, as established in recent work of Carlen and Vershynina [arXiv:1710.02409, arXiv:1710.08080]. Finally, we extend the definition of the optimized $f$-divergence, its data-processing inequality, and all of our recoverability results to the general von Neumann algebraic setting, so that all of our results can be employed in physical settings beyond those confined to the most common finite-dimensional setting of interest in quantum information theory.


翻译:优化的量子 美元 优化的量子 美元 刺激度 优化的量子 优化的量子 美元 优化的量子 价格 优化的量子 构成一个有区别措施的大家庭, 包括量子相对增温 和三明治的 R\ enyi 相对准受精性 特例 。 在本文中, 我们为优化的量子增压 优化的量子增压 和 其频道处理版本 之间的绝对差别, 在于当回收频道变成旋转的佩茨恢复频道时, 包括量子 和 三明治相对准受精度 。 我们不仅通过这些结果对 数据处理不平等 进行物理上有意义的改进, 以优化的 美元 。 此外, 优化 优化 美元 优化 的量子增压 之间的绝对值 。 之前, 我们的量子加固值加固值 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Quantum Advantage for All
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年10月14日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Quantum Advantage for All
Arxiv
0+阅读 · 2021年11月23日
Arxiv
0+阅读 · 2021年11月23日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
5+阅读 · 2020年10月14日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员