MARS is a popular method for nonparametric regression introduced by Friedman in 1991. MARS fits simple nonlinear and non-additive functions to regression data. We propose and study a natural LASSO variant of the MARS method. Our method is based on least squares estimation over a convex class of functions obtained by considering infinite-dimensional linear combinations of functions in the MARS basis and imposing a variation based complexity constraint. We show that our estimator can be computed via finite-dimensional convex optimization and that it is naturally connected to nonparametric function estimation techniques based on smoothness constraints. Under a simple design assumption, we prove that our estimator achieves a rate of convergence that depends only logarithmically on dimension and thus avoids the usual curse of dimensionality to some extent. We implement our method with a cross-validation scheme for the selection of the involved tuning parameter and show that it has favorable performance compared to the usual MARS method in simulation and real data settings.
翻译:Friedman于1991年引入了非参数回归法,MARS是一种流行的非参数回归法,Friedman于1991年引入了非线性和非补充性功能,适合回归数据。我们提出并研究MARS法的自然的LASSO变异法。我们的方法基于在MARS中考虑无线性功能的无限线性组合和基于变异的复杂度限制而获得的共形功能类别的最小平方估计值。我们表明,我们的测算器可以通过有限维度的共形优化来计算,并且自然地与基于平滑度限制的非参数估计技术相连接。根据一个简单的设计假设,我们证明我们的测算器达到的趋同率仅取决于尺寸的逻辑性,从而在某种程度上避免了通常对维度的诅咒。我们用一个交叉校准方法来选择相关的调控参数,并表明,与模拟和真实数据环境中通常的MARS方法相比,其性表现优于。