It is well-known that inverse dynamics models can improve tracking performance in robot control. These models need to precisely capture the robot dynamics, which consist of well-understood components, e.g., rigid body dynamics, and effects that remain challenging to capture, e.g., stick-slip friction and mechanical flexibilities. Such effects exhibit hysteresis and partial observability, rendering them, particularly challenging to model. Hence, hybrid models, which combine a physical prior with data-driven approaches are especially well-suited in this setting. We present a novel hybrid model formulation that enables us to identify fully physically consistent inertial parameters of a rigid body dynamics model which is paired with a recurrent neural network architecture, allowing us to capture unmodeled partially observable effects using the network memory. We compare our approach against state-of-the-art inverse dynamics models on a 7 degree of freedom manipulator. Using data sets obtained through an optimal experiment design approach, we study the accuracy of offline torque prediction and generalization capabilities of joint learning methods. In control experiments on the real system, we evaluate the model as a feed-forward term for impedance control and show the feedback gains can be drastically reduced to achieve a given tracking accuracy.
翻译:众所周知,反向动态模型可以改善机器人控制的跟踪性能。这些模型需要精确地捕捉机器人动态,机器人动态由非常清楚的部件组成,例如硬体体动态,以及仍然难以捕捉的影响,例如粘滑摩擦和机械灵活性。这些效应显示出歇斯底里和部分可视性,使它们特别具有模型的挑战性。因此,混合模型,将物理先行和数据驱动方法相结合,在这个环境中特别适合。我们提出了一个新型混合模型,使我们能够确定与经常神经网络结构相配的僵硬体动态模型的完全物理一致的惯性参数,使我们能够利用网络记忆捕捉未建模的部分可观测效应。我们比较我们的方法与7度自由操纵器上最先进的反向动态模型。我们利用通过最佳实验设计方法获得的数据集,我们研究离线预测的准确性和联合学习方法的普及能力。在实际系统的控制实验中,我们评估模型,作为向后向后向反馈的追踪术语,以大幅降低控制。