项目名称: 基于分子动力学的天然水环境中纳米污染物相互作用机制研究

项目编号: No.51278147

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 建筑科学

项目作者: 崔福义

作者单位: 哈尔滨工业大学

项目金额: 85万元

中文摘要: 随着纳米科技的发展,大量纳米材料会直接或间接进入水环境系统,与环境本底纳米污染物相互作用。由于纳米污染物特异理化性质(小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应),纳米材料与环境本底纳米污染物结合体的潜在危害对水环境安全提出了新的挑战。分子动力学模拟是从原子分子水平探索物质微观作用本质的有效手段,弥补了现有实验技术不能从原子分子水平上,定量揭示水环境中纳米物质动态变化特征及相互作用机理的不足。本课题针对天然水环境中典型纳米材料与环境本底纳米污染物,将分子动力学模拟同实验研究、理论模型结合,研究纳米材料在水环境中的聚集、沉积过程、纳米材料与环境本底纳米污染物的相互作用机理。并在此基础上,揭示纳米污染物在微米级颗粒物表面的吸附机理。此研究从本质上考察了纳米污染物在水环境中的协同污染效应,为水环境生态安全性和纳米科技可持续发展奠定研究基础。

中文关键词: 纳米物质;分子动力学模拟;布朗动力学模拟;聚集;相互作用

英文摘要: With the increasing development of nanotechnology, larger number of engineered nanomaterials will enter the aquatic environment directly or indirectly. Once released, the engineered nanomaterials maybe interact with environmental nanopollutants. Because of the unique characteristics of nanoscale materials(small size effect, surface effect, quantum size effect, macro-quantum tunnel effect), the engineered nanomaterials themselves and the untied particles with environmental nanopollutants will pose a new potential challenge to the aquatic environment. Molecular dynamics simulations can be used to quantificationally study the micro-interaction mechanisms of pollutants on atomic-level, which can't be realized by experiments. Molecular dynamics simulations, experimental and theoretical approaches are explored to investigate the processes of engineered nanomaterials aggregation and deposition, and elucidate the interaction mechanisms between the engineered nanoparticles and environmental nanopollutants. In addition, we will further research the adsorption mechanisms of nanoscale materials with the micron particles. The present stated work can provide a comprehensive understanding of nanoscale materials environmental fate and synergy potential impacts on aquatic environments,which ensure the aquatic environment securit

英文关键词: nanomaterials;molecular dynamic simulation;brownian dynamic simulation;aggregation;interaction

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
163+阅读 · 2020年7月27日
GPU 计算和深度学习在药物发现中的转型作用
机器之心
2+阅读 · 2022年5月2日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
微软办公环境大揭秘!
微软招聘
0+阅读 · 2021年12月24日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Outage Analysis of Aerial Semi-Grant-Free NOMA Systems
Arxiv
0+阅读 · 2022年5月11日
Talking-Heads Attention
Arxiv
15+阅读 · 2020年3月5日
小贴士
相关主题
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
34+阅读 · 2021年10月17日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
163+阅读 · 2020年7月27日
相关资讯
GPU 计算和深度学习在药物发现中的转型作用
机器之心
2+阅读 · 2022年5月2日
靶向蛋白质降解的蛋白-蛋白相互作用预测
GenomicAI
4+阅读 · 2022年3月5日
微软办公环境大揭秘!
微软招聘
0+阅读 · 2021年12月24日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
无人机集群对抗研究的关键问题
无人机
55+阅读 · 2018年9月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员