We introduce the group-equivariant autoencoder (GE-autoencoder) -- a deep neural network (DNN) method that locates phase boundaries by determining which symmetries of the Hamiltonian have spontaneously broken at each temperature. We use group theory to deduce which symmetries of the system remain intact in all phases, and then use this information to constrain the parameters of the GE-autoencoder such that the encoder learns an order parameter invariant to these ``never-broken'' symmetries. This procedure produces a dramatic reduction in the number of free parameters such that the GE-autoencoder size is independent of the system size. We include symmetry regularization terms in the loss function of the GE-autoencoder so that the learned order parameter is also equivariant to the remaining symmetries of the system. By examining the group representation by which the learned order parameter transforms, we are then able to extract information about the associated spontaneous symmetry breaking. We test the GE-autoencoder on the 2D classical ferromagnetic and antiferromagnetic Ising models, finding that the GE-autoencoder (1) accurately determines which symmetries have spontaneously broken at each temperature; (2) estimates the critical temperature in the thermodynamic limit with greater accuracy, robustness, and time-efficiency than a symmetry-agnostic baseline autoencoder; and (3) detects the presence of an external symmetry-breaking magnetic field with greater sensitivity than the baseline method. Finally, we describe various key implementation details, including a new method for extracting the critical temperature estimate from trained autoencoders and calculations of the DNN initialization and learning rate settings required for fair model comparisons.
翻译:我们引入了群体- 等同性自定义自动读数器( GE- autoencoard), 这是一种深神经网络( DNN) 方法, 通过确定汉密尔顿人的对称性在每个温度下都自发损坏来定位阶段边界。 我们使用小组理论来推断该系统的对称性在所有阶段都保持完好, 然后使用这种信息来限制 GE- 自动解码器参数的参数, 使编码器学习了这些“ 精度- 深度- 温度” 的对称性。 这个程序可以大幅减少自由参数的数量, 从而让 Outoencoder 的对等值的对等值在每一个温度大小上都能够独立。 我们使用小组理论来推断系统各个阶段的对称性对称性对称性, 从而限制GE- autder 的对等值值值值值值值值值值值值值值值值的参数值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值。 然后, 我们就能提取相关自定义对自定义的对调值值值的值值值值值值值值值值值值值值值值的值值值值值值值值值值值值的值值值值值值值的值值值值值值的值值值值值值的值的值值值值值的值值值的值的值值值值值值值的值值值的值的值量值的值的值值值值值量值量值量值的值量值量值量值的值的值的值的值量值值值的值的值的值的值的值的值的值的值的值量。。。。 我们在初始值的初始值的初始值的初始值的初始值的初始值的初始值的值的值的值的值的值度度度度度度的初始值的值的值中, 的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值值值值的值值值的值值的值的值的值的值的值值