We introduce the group-equivariant autoencoder (GE-autoencoder) -- a deep neural network (DNN) method that locates phase boundaries by determining which symmetries of the Hamiltonian have spontaneously broken at each temperature. We use group theory to deduce which symmetries of the system remain intact in all phases, and then use this information to constrain the parameters of the GE-autoencoder such that the encoder learns an order parameter invariant to these ``never-broken'' symmetries. This procedure produces a dramatic reduction in the number of free parameters such that the GE-autoencoder size is independent of the system size. We include symmetry regularization terms in the loss function of the GE-autoencoder so that the learned order parameter is also equivariant to the remaining symmetries of the system. By examining the group representation by which the learned order parameter transforms, we are then able to extract information about the associated spontaneous symmetry breaking. We test the GE-autoencoder on the 2D classical ferromagnetic and antiferromagnetic Ising models, finding that the GE-autoencoder (1) accurately determines which symmetries have spontaneously broken at each temperature; (2) estimates the critical temperature in the thermodynamic limit with greater accuracy, robustness, and time-efficiency than a symmetry-agnostic baseline autoencoder; and (3) detects the presence of an external symmetry-breaking magnetic field with greater sensitivity than the baseline method. Finally, we describe various key implementation details, including a new method for extracting the critical temperature estimate from trained autoencoders and calculations of the DNN initialization and learning rate settings required for fair model comparisons.


翻译:我们引入了群体- 等同性自定义自动读数器( GE- autoencoard), 这是一种深神经网络( DNN) 方法, 通过确定汉密尔顿人的对称性在每个温度下都自发损坏来定位阶段边界。 我们使用小组理论来推断该系统的对称性在所有阶段都保持完好, 然后使用这种信息来限制 GE- 自动解码器参数的参数, 使编码器学习了这些“ 精度- 深度- 温度” 的对称性。 这个程序可以大幅减少自由参数的数量, 从而让 Outoencoder 的对等值的对等值在每一个温度大小上都能够独立。 我们使用小组理论来推断系统各个阶段的对称性对称性对称性, 从而限制GE- autder 的对等值值值值值值值值值值值值值值值值的参数值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值值。 然后, 我们就能提取相关自定义对自定义的对调值值值的值值值值值值值值值值值值值值值值的值值值值值值值值值值值值的值值值值值值值的值值值值值值的值值值值值值的值的值值值值值的值值值的值的值值值值值值值的值值值的值的值量值的值的值值值值值量值量值量值的值量值量值量值的值的值的值的值量值值值的值的值的值的值的值的值的值的值的值量。。。。 我们在初始值的初始值的初始值的初始值的初始值的初始值的初始值的值的值的值的值的值度度度度度度的初始值的值的值中, 的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值的值值值值的值值值的值值的值的值的值的值的值值

0
下载
关闭预览

相关内容

自动编码器是一种人工神经网络,用于以无监督的方式学习有效的数据编码。自动编码器的目的是通过训练网络忽略信号“噪声”来学习一组数据的表示(编码),通常用于降维。与简化方面一起,学习了重构方面,在此,自动编码器尝试从简化编码中生成尽可能接近其原始输入的表示形式,从而得到其名称。基本模型存在几种变体,其目的是迫使学习的输入表示形式具有有用的属性。自动编码器可有效地解决许多应用问题,从面部识别到获取单词的语义。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月24日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员