Finding Ricci-flat (Calabi--Yau) metrics is a long standing problem in geometry with deep implications for string theory and phenomenology. A new attack on this problem uses neural networks to engineer approximations to the Calabi--Yau metric within a given K\"ahler class. In this paper we investigate numerical Ricci-flat metrics over smooth and singular K3 surfaces and Calabi--Yau threefolds. Using these Ricci-flat metric approximations for the Cefal\'u and Dwork family of quartic twofolds and the Dwork family of quintic threefolds, we study characteristic forms on these geometries. Using persistent homology, we show that high curvature regions of the manifolds form clusters near the singular points, but also elsewhere. For our neural network approximations, we observe a Bogomolov--Yau type inequality $3c_2 \geq c_1^2$ and observe an identity when our geometries have isolated $A_1$ type singularities. We sketch a proof that $\chi(X~\smallsetminus~\mathrm{Sing}\,{X}) + 2~|\mathrm{Sing}\,{X}| = 24$ also holds for our numerical approximations.
翻译:查找 Ricci- place (Calabi- Yau) 度量是几何中长期存在的问题, 对字符串理论和苯蛋学具有深远影响。 对这个问题的新攻击使用神经网络在给定 K\\ “ ahler 类内设计与 Calabi- Yau 度量近似于 Calabi- Yau 度值。 在本文中, 我们调查光滑和单K3 表面和 Calabi- Yau 3 的数值缩微度度量度度度值。 使用这些微量度度度度度度度度度度度度度近似于 Ceffal_ u 和 Dwork 倍数组对弦性双元值值值值值值和角性三分数组的测度度度度度度度度度度度度度度度度度度度值, 我们研究这些地貌特征的特征。 我们使用持续的同理学, 我们展示了高曲线区块在单点附近形成星座的群。 我们观察Bogomoloovlov- Yau 3\_ xm=xm=xmus