In this paper, we propose a framework where over-the-air computation (OAC) occurs in both uplink (UL) and downlink (DL), sequentially, in a multi-cell environment to address the latency and the scalability issues of federated edge learning (FEEL). To eliminate the channel state information (CSI) at the edge devices (EDs) and edge servers (ESs) and relax the time-synchronization requirement for the OAC, we use a non-coherent computation scheme, i.e., frequency-shift keying (FSK)-based majority vote (MV) (FSK-MV). With the proposed framework, multiple ESs function as the aggregation nodes in the UL and each ES determines the MVs independently. After the ESs broadcast the detected MVs, the EDs determine the sign of the gradient through another OAC in the DL. Hence, inter-cell interference is exploited for the OAC. In this study, we prove the convergence of the non-convex optimization problem for the FEEL with the proposed OAC framework. We also numerically evaluate the efficacy of the proposed method by comparing the test accuracy in both multi-cell and single-cell scenarios for both homogeneous and heterogeneous data distributions.
翻译:在本文中,我们提出了一个框架,据此,我们使用一个不协调的计算方法,即频率档键盘(FSK)多数多数投票(MV),在多细胞环境中,先后在多细胞环境中进行超载计算(OAC),以解决联合边缘学习(FEEL)的悬浮和伸缩问题。为了消除边缘设备(EDs)和边缘服务器(ESS)的频道状态信息(CSI),放松OAC的时间同步要求,我们使用一种不协调的计算方法,即频率档次键盘(FSK)多数投票(MV),根据拟议框架,多种ES作为UL的聚合节点,每个ES独立决定MV。在ES播放所检测到的MV(E)和边缘服务器(ES)后,EDs通过DL的另一次OAC确定梯度的标志。因此,为OAC利用跨细胞干扰。在这项研究中,我们证明在拟议的OAC框架中,非conx优化问题与拟议的OAC(FS-MV)多数投票(MV)(FS-MV)(FS-MV)(FS-MV)(FS-MV)(FS-MV)(FS-MV)(FS-S-S-S-S-S-S-S-MV)(FS-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-MV)之间的准确性能性能度框架)的结合。我们用数字评估了拟议数据模型和单一模型模型模型的模拟法,我们用数字性评估了提议的计算法的模拟模型和单一-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-MV-MV-SDL-ML-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-