Deep models are designed to operate on huge volumes of high dimensional data such as images. In order to reduce the volume of data these models must process, we propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an \textit{arbitrary} downstream task network (e.g. classifier). In the first stage, we efficiently subsample \textit{candidate elements} using conditionally independent Bernoulli random variables by capturing coarse grained global information using set encoding functions, followed by conditionally dependent autoregressive subsampling of the candidate elements using Categorical random variables by modeling pair-wise interactions using set attention networks in the second stage. We apply our method to feature and instance selection and show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification. Additionally, for nonparametric models such as Neural Processes that require to leverage the whole training data at inference time, we show that our method enhances the scalability of these models.
翻译:深层模型设计用于大量高维数据(如图像)操作。为了减少数据量,我们必须处理这些模型。为了减少数据数量,我们提议一个基于固定的两阶段端到端神经子抽样模型,该模型与下游任务网络(如分类员)共同优化。在第一阶段,我们使用有条件独立的伯努利随机变量,利用设定编码功能获取粗粒的全球信息,然后通过在第二阶段利用设定的注意网络模拟双向随机变量,对候选元素进行有条件依赖的自动递增子取样。我们运用我们的方法来选择特征和实例,并表明它在低子抽样率下,在包括图像分类、图像重建、功能重建和微小分数分类在内的各种任务上,超越了相关基线。此外,对于非对称模型,例如神经进程,需要利用整个推论时间的培训数据,我们证明我们的方法加强了这些模型的可扩展性。