A new estimator, named S-LASSO, is proposed for the coefficient function of the Function-on-Function linear regression model. The S-LASSO estimator is shown to be able to increase the interpretability of the model, by better locating regions where the coefficient function is zero, and to smoothly estimate non-zero values of the coefficient function. The sparsity of the estimator is ensured by a \textit{functional LASSO penalty}, which pointwise shrinks toward zero the coefficient function, while the smoothness is provided by two roughness penalties that penalize the curvature of the final estimator. The resulting estimator is proved to be estimation and pointwise sign consistent. Via an extensive Monte Carlo simulation study, the estimation and predictive performance of the S-LASSO estimator are shown to be better than (or at worst comparable with) competing estimators already presented in the literature before. Practical advantages of the S-LASSO estimator are illustrated through the analysis of the \textit{Canadian weather}, \textit{Swedish mortality} and \textit{ship CO\textsubscript{2} emission data}. The S-LASSO method is implemented in the \textsf{R} package \textsf{slasso}, openly available online on CRAN.
翻译:S- LASSO 显示 S- LASSO 估计器能够通过更好地定位系数函数为零的区域来提高模型的可解释性,并顺利地估计系数函数的非零值。 估计器的宽度由先前文献中已经显示的相竞估计器确保。 S- LASSO 估计器的实际优点通过对最终估计器的曲线分析来说明: 最终估计器的曲线性能。 由此得出的估计器被证明是估计的,并且带有点符号的一致性。 S- LASSO 估计器的广泛模拟研究、估计和预测性能被显示优于(或最差于) 先前文献中已经显示的相竞估计器。 S- LASSO 估计器的实际优点是通过对可公开的天气包件{RASS2 数据 和可公开的OASS 格式分析来说明 。 S- LASS- taim 数据是已实施的。