The proliferation of IoT and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time-series data generated by multiple sensors with different modalities. While there are promising deep neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention mechanism to capture cross-sensor correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on three datasets that contain data generated by multiple inertial measurement units. Centaur's data cleaning module outperforms 2 state-of-the-art autoencoder-based models and its multimodal fusion module outperforms 4 strong baselines. Compared to 2 related robust fusion architectures, Centaur is more robust, achieving 11.59-17.52% higher accuracy in HAR, especially in the presence of consecutive missing data in multiple sensor channels.
翻译:带有不同传感器的IOT和移动设备的扩散使得新的应用得以实现,这些应用依赖多种不同方式传感器生成的时间序列数据融合。虽然有前景的极深的多式聚合神经网络结构,但其性能迅速崩溃,因为存在连续缺失的数据和多种模式/传感器的噪音,这些在现实世界环境中普遍存在的问题。我们提议Centaur,这是人类活动识别的多式聚合模型(HAR),对这些数据质量问题具有很强的作用。Centaur将数据清理模块结合起来,这是一个数据清理模块,它是一个分解自动化的自动编码器,与相交的多式融合模块,这是一个深层的神经网络,具有获取跨传感器相关性的自我注意机制。我们利用一种随机数据腐败计划对Centaur进行培训,并在包含多个惯性测量器生成的数据的三个数据集上对其进行评估。Centaur的数据清理模块比2个状态的自动编码模型和它的多式聚合模模模模模要优,而多式组合组合模块则是一个深度的深层神经网络网络网络网络,在11.59级的更强的连续结构中实现2个强的精确的精确的标定。 比较精确的SHIR5,在2级基准中,比重的SIR</s>