The proliferation of IoT and mobile devices equipped with heterogeneous sensors has enabled new applications that rely on the fusion of time-series data generated by multiple sensors with different modalities. While there are promising deep neural network architectures for multimodal fusion, their performance falls apart quickly in the presence of consecutive missing data and noise across multiple modalities/sensors, the issues that are prevalent in real-world settings. We propose Centaur, a multimodal fusion model for human activity recognition (HAR) that is robust to these data quality issues. Centaur combines a data cleaning module, which is a denoising autoencoder with convolutional layers, and a multimodal fusion module, which is a deep convolutional neural network with the self-attention mechanism to capture cross-sensor correlation. We train Centaur using a stochastic data corruption scheme and evaluate it on three datasets that contain data generated by multiple inertial measurement units. Centaur's data cleaning module outperforms 2 state-of-the-art autoencoder-based models and its multimodal fusion module outperforms 4 strong baselines. Compared to 2 related robust fusion architectures, Centaur is more robust, achieving 11.59-17.52% higher accuracy in HAR, especially in the presence of consecutive missing data in multiple sensor channels.


翻译:带有不同传感器的IOT和移动设备的扩散使得新的应用得以实现,这些应用依赖多种不同方式传感器生成的时间序列数据融合。虽然有前景的极深的多式聚合神经网络结构,但其性能迅速崩溃,因为存在连续缺失的数据和多种模式/传感器的噪音,这些在现实世界环境中普遍存在的问题。我们提议Centaur,这是人类活动识别的多式聚合模型(HAR),对这些数据质量问题具有很强的作用。Centaur将数据清理模块结合起来,这是一个数据清理模块,它是一个分解自动化的自动编码器,与相交的多式融合模块,这是一个深层的神经网络,具有获取跨传感器相关性的自我注意机制。我们利用一种随机数据腐败计划对Centaur进行培训,并在包含多个惯性测量器生成的数据的三个数据集上对其进行评估。Centaur的数据清理模块比2个状态的自动编码模型和它的多式聚合模模模模模要优,而多式组合组合模块则是一个深度的深层神经网络网络网络网络,在11.59级的更强的连续结构中实现2个强的精确的精确的标定。 比较精确的SHIR5,在2级基准中,比重的SIR</s>

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
68+阅读 · 2022年9月7日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员