Solid texture synthesis (STS), as an effective way to extend 2D exemplar to a 3D solid volume, exhibits advantages in numerous application domains. However, existing methods generally synthesize solid texture with specific features, which may result in the failure of capturing diversified textural information. In this paper, we propose a novel generative adversarial nets-based approach (STS-GAN) to hierarchically learn solid texture with a feature-free nature. Our multi-scale discriminators evaluate the similarity between patch from exemplar and slice from the generated volume, promoting the generator to synthesize realistic solid textures. Experimental results demonstrate that the proposed method can generate high-quality solid textures with similar visual characteristics to the exemplar.


翻译:固体质素合成(STS)是将2D例样卷扩展至3D种固体体积的一种有效方法,它在许多应用领域都具有优势,然而,现有方法通常将固态质体与具体特征合成,这可能导致无法捕捉到多样化的质谱信息。在本文中,我们建议采用新型的基因化对抗网基方法(STS-GAN),在等级上学习无特征的固态质质体。我们的多尺度歧视者评估了从原体体体积到切片之间的相似性,促进生成者合成现实的固态质质质。实验结果表明,拟议方法可以产生与原体相近的高质量固质质素。

0
下载
关闭预览

相关内容

生成对抗网络 (Generative Adversarial Network, GAN) 是一类神经网络,通过轮流训练判别器 (Discriminator) 和生成器 (Generator),令其相互对抗,来从复杂概率分布中采样,例如生成图片、文字、语音等。GAN 最初由 Ian Goodfellow 提出,原论文见 Generative Adversarial Networks

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
【论文】结构GANs,Structured GANs,
专知会员服务
15+阅读 · 2020年1月16日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
24+阅读 · 2019年12月15日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
205+阅读 · 2019年9月30日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Text to Image Synthesis论文解读
统计学习与视觉计算组
13+阅读 · 2017年6月9日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
Top
微信扫码咨询专知VIP会员