Universal domain adaptation (UniDA) aims to transfer the knowledge of common classes from source domain to target domain without any prior knowledge on the label set, which requires to distinguish the unknown samples from the known ones in the target domain. A main challenge of UniDA is that the unequal label spaces of both domains causes the misalignment between two domains.To address the above challenging problems, we propose a new uncertainty-guided UniDA framework. Firstly, we introduce an empirical estimation of the probability of a target sample belonging to the unknown class with exploiting the distribution of target samples. Then, based on the estimation, we propose a novel neighbors searching method in the linear subspace with a $\delta$-filter to estimate the uncertainty score of a target sample and discover unknown samples. It fully utilizes the relationship between a target sample and its neighbors in source domain to avoid the influence of domain misalignment. Secondly, this paper well balances the confidence of predictions for both known and unknown samples through an uncertainty-guided margin loss based on the predictions of discovered unknown samples, which can reduce the gap between intra-class variance of known classes with respect to the unknown class. Finally, experiments on three public datasets demonstrate that our method significantly outperforms existing state-of-the-art methods.


翻译:通用域适应(UniDA)旨在将普通类别知识从源域转移到目标域,而没有事先对标签集有任何了解,这就要求将未知样本与目标域已知样本区分开来。UniDA的主要挑战是,两个域的不平等标签空间导致两个域间的不匹配。为了解决上述具有挑战性的问题,我们提议一个新的不确定性引导UniDA框架。首先,我们根据对未知样本的分布的预测,对属于未知类别的目标样本的概率进行实证性估计,从而利用目标样本的分布进行利用。然后,根据估计,我们提议在线形次空间采用一个新的邻居搜索方法,用$\delta$-过滤器来估计目标样本的不确定性分数并发现未知样本。它充分利用目标样本与源域邻居之间的关系,以避免区域偏差的影响。第二,本文根据所发现的未知样本的预测,对已知和未知样本的差值损失进行了不确定性的预测,从而可以缩小已知类别内部差异与未知类别之间的差距,并发现未知类别中未知样本的样本。最后,我们用三种实验方法展示了现有三种形式。</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
163+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员