Representation learning is a key technique in modern machine learning that enables models to identify meaningful patterns in complex data. However, different methods tend to extract distinct aspects of the data, and relying on a single approach may overlook important insights relevant to downstream tasks. This paper proposes a performance-enhanced aggregated representation learning method, which combines multiple representation learning approaches to improve the performance of downstream tasks. The framework is designed to be general and flexible, accommodating a wide range of loss functions commonly used in machine learning models. To ensure computational efficiency, we use surrogate loss functions to facilitate practical weight estimation. Theoretically, we prove that our method asymptotically achieves optimal performance in downstream tasks, meaning that the risk of our predictor is asymptotically equivalent to the theoretical minimum. Additionally, we derive that our method asymptotically assigns nonzero weights to correctly specified models. We evaluate our method on diverse tasks by comparing it with advanced machine learning models. The experimental results demonstrate that our method consistently outperforms baseline methods, showing its effectiveness and broad applicability in real-world machine learning scenarios.
翻译:暂无翻译