Specified Certainty Classification (SCC) is a new paradigm for employing classifiers whose outputs carry uncertainties, typically in the form of Bayesian posterior probabilities. By allowing the classifier output to be less precise than one of a set of atomic decisions, SCC allows all decisions to achieve a specified level of certainty, as well as provides insights into classifier behavior by examining all decisions that are possible. Our primary illustration is read classification for reference-guided genome assembly, but we demonstrate the breadth of SCC by also analyzing COVID-19 vaccination data.
翻译:特定确定性分类(SCC)是雇用其产出带有不确定性的分类师的新范例,通常以巴伊西亚次子概率的形式出现。通过允许分类师的输出比一套原子决定中的一种更不精确,SCC允许所有决定达到一定的确定性水平,并通过审查所有可能做出的决定对分类师的行为提供洞察力。我们的主要说明是阅读参考制基因组组组的分类,但我们通过分析COVID-19疫苗数据来显示SCC的广度。