Specified Certainty Classification (SCC) is a new paradigm for employing classifiers whose outputs carry uncertainties, typically in the form of Bayesian posterior probabilities. By allowing the classifier output to be less precise than one of a set of atomic decisions, SCC allows all decisions to achieve a specified level of certainty, as well as provides insights into classifier behavior by examining all decisions that are possible. Our primary illustration is read classification for reference-guided genome assembly, but we demonstrate the breadth of SCC by also analyzing COVID-19 vaccination data.


翻译:特定确定性分类(SCC)是雇用其产出带有不确定性的分类师的新范例,通常以巴伊西亚次子概率的形式出现。通过允许分类师的输出比一套原子决定中的一种更不精确,SCC允许所有决定达到一定的确定性水平,并通过审查所有可能做出的决定对分类师的行为提供洞察力。我们的主要说明是阅读参考制基因组组组的分类,但我们通过分析COVID-19疫苗数据来显示SCC的广度。

0
下载
关闭预览

相关内容

如今,服务业占据了IT行业的主要部分。公司越来越喜欢专注于其核心专业领域,并使用IT服务来满足其所有外围需求。服务计算是一门新的科学,其目的是研究和更好地理解这个高度流行的产业的基础。它涵盖了利用计算和信息技术来建模、创建、操作和管理业务服务的科学和技术。SCC 2019也将为构建这一重要科学的支柱和塑造服务计算的未来做出贡献。 官网链接:https://conferences.computer.org/services/2019/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
自回归模型:PixelCNN
专知会员服务
26+阅读 · 2020年3月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
6+阅读 · 2020年9月29日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员