We prove energy stability of a standard operator-splitting method for the Cahn-Hilliard equation. We establish uniform bound of Sobolev norms of the numerical solution and convergence of the splitting approximation. This is the first unconditional energy stability result for the operator-splitting method for the Cahn-Hilliard equation. Our analysis can be extended to many other models.
翻译:我们证明了卡恩-希利亚德等式标准操作员分解方法的能源稳定性,我们确立了索博廖夫数字解决方案标准的统一约束和分解近似值的趋同,这是卡恩-希利亚德等式操作员分解方法的第一个无条件能源稳定性结果,我们的分析可以扩展到许多其他模式。