This paper studies learning node representations with graph neural networks (GNNs) for unsupervised scenario. Specifically, we derive a theoretical analysis and provide an empirical demonstration about the non-steady performance of GNNs over different graph datasets, when the supervision signals are not appropriately defined. The performance of GNNs depends on both the node feature smoothness and the locality of graph structure. To smooth the discrepancy of node proximity measured by graph topology and node feature, we proposed SAIL - a novel \underline{S}elf-\underline{A}ugmented graph contrast\underline{i}ve \underline{L}earning framework, with two complementary self-distilling regularization modules, \emph{i.e.}, intra- and inter-graph knowledge distillation. We demonstrate the competitive performance of SAIL on a variety of graph applications. Even with a single GNN layer, SAIL has consistently competitive or even better performance on various benchmark datasets, comparing with state-of-the-art baselines.


翻译:本文用图形神经网络( GNNs) 学习图形神经网络( GNNs) 的节点表达方式, 以用于不受监督的情景。 具体地说, 我们从理论上进行分析, 并实验性地展示 GNNs 在不同图形数据集中的非稳定性表现, 当监管信号没有适当定义时。 GNNs 的表现既取决于节点特征的平稳性能, 也取决于图形结构的位置。 为了平滑用图形表层和节点特征测量的节点相近性差异, 我们建议 SAIL - 一个全新的下线 elf- sunderline{ elf- line{A} 放大式的图形对比线 { i} 底线{ { L} 学习框架, 有两个互补的自我蒸馏常规化模块, 即\emph{ e. } 内部和间知识蒸馏模块。 我们展示 SAIL 在各种图形应用程序上的竞争性性表现。 即使在单一的 GNNNND 层, SAIL 在各种基准数据集上, 也始终具有竞争力或更好的业绩, 。 与最新基准基准基线比较。

2
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
【图与几何深度学习】Graph and geometric deep learning,49页ppt
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
【google】监督对比学习,Supervised Contrastive Learning
专知会员服务
31+阅读 · 2020年4月23日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2022年2月18日
Learning Weakly-Supervised Contrastive Representations
Arxiv
13+阅读 · 2021年10月22日
Arxiv
10+阅读 · 2021年2月26日
VIP会员
相关资讯
Graph: 表现再差,也不进行Pre-Training? Self-Supervised Learning真香!
机器学习与推荐算法
3+阅读 · 2020年6月30日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员