In this paper, we investigate if we could make the self-training -- a simple but popular framework -- work better for semi-supervised segmentation. Since the core issue in semi-supervised setting lies in effective and efficient utilization of unlabeled data, we notice that increasing the diversity and hardness of unlabeled data is crucial to performance improvement. Being aware of this fact, we propose to adopt the most plain self-training scheme coupled with appropriate strong data augmentations on unlabeled data (namely ST) for this task, which surprisingly outperforms previous methods under various settings without any bells and whistles. Moreover, to alleviate the negative impact of the wrongly pseudo labeled images, we further propose an advanced self-training framework (namely ST++), that performs selective re-training via selecting and prioritizing the more reliable unlabeled images. As a result, the proposed ST++ boosts the performance of semi-supervised model significantly and surpasses existing methods by a large margin on the Pascal VOC 2012 and Cityscapes benchmark. Overall, we hope this straightforward and simple framework will serve as a strong baseline or competitor for future works. Code is available at https://github.com/LiheYoung/ST-PlusPlus.
翻译:在本文中,我们研究我们是否能使自我培训 -- -- 一个简单但受欢迎的框架 -- -- 更好地促进半监督的分割。由于半监督环境中的核心问题在于有效和高效地利用未贴标签的数据,我们注意到,增加未贴标签数据的多样性和难度对于改善业绩至关重要。我们意识到这一事实,我们提议为这项任务采用最简单的自我培训计划,同时在未贴标签数据(即ST)上适当强化数据,这出人意料的是,在各种环境下,在没有任何钟声和哨声的情况下,比以往的方法要好。此外,为了减轻错误的假贴标签图像的负面影响,我们进一步提议一个先进的自我培训框架(即ST++),通过选择和优先排序更可靠的未贴标签图像进行选择性的再培训。因此,拟议的ST++将大大提升半超标的模型(即ST)的性能,并通过在Pascal VOC 2012 和 Cityscovers 基准上的大幅幅度超过现有方法。总体而言,我们希望这个简单和简单的框架将成为未来工作的强有力的基线或comitor.Yous. https/ amus/complubrus.