We consider the problem of efficient blackbox optimization over a large hybrid search space, consisting of a mixture of a high dimensional continuous space and a complex combinatorial space. Such examples arise commonly in evolutionary computation, but also more recently, neuroevolution and architecture search for Reinforcement Learning (RL) policies. In this paper, we introduce ES-ENAS, a simple joint optimization procedure by combining Evolutionary Strategies (ES) and combinatorial optimization techniques in a highly scalable and intuitive way, inspired by the \textit{one-shot} or \textit{supernet} paradigm introduced in Efficient Neural Architecture Search (ENAS). Our main insight is noticing that ES is already a highly distributed algorithm involving hundreds of blackbox evaluations which can not only be used for training neural network weights, but also for feedback to a combinatorial optimizer. Through this relatively simple marriage between two different lines of research, we are able to gain the best of both worlds, and empirically demonstrate our approach by optimizing BBOB functions over hybrid spaces as well as combinatorial neural network architectures via edge pruning and quantization on popular RL benchmarks. Due to the modularity of the algorithm, we also are able incorporate a wide variety of popular techniques ranging from use of different continuous and combinatorial optimizers, as well as constrained optimization.


翻译:我们考虑在大型混合搜索空间上高效黑匣子优化的问题,包括高维连续空间和复杂组合空间的混合体。这些例子通常出现在进化计算中,但更近些时,神经进化和建筑搜索强化学习(RL)政策。在本文中,我们引入了ES-ENAS,这是一个简单的联合优化程序,将进化战略(ES)和组合优化技术结合到高度可缩放和直观的方法中,受到\ textit{one-shot} 或\ textit{supernet} 模式的启发,引入了高效神经结构搜索(ENAS)中。我们的主要见解是,ES已经是一种高度分布的算法,涉及数百个黑盒评估,不仅可用于培训神经网络重量,而且可用于向组合优化者反馈。通过两种不同研究线之间的相对简单的结合,我们能够从混合空间优化BBOB功能以及通过精准神经网络结构搜索(ENAS ) 。我们的主要洞察觉觉觉发现,ES已经是一种高度分布式的计算方法,它不仅可用于培训神经箱重量,而且还可以用于向组合优化的组合优化技术,还用于向组合优化的组合优化。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
75+阅读 · 2021年9月27日
机器学习组合优化
专知会员服务
109+阅读 · 2021年2月16日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员