Gaussian process optimization is a successful class of algorithms(e.g. GP-UCB) to optimize a black-box function through sequential evaluations. However, for functions with continuous domains, Gaussian process optimization has to rely on either a fixed discretization of the space, or the solution of a non-convex optimization subproblem at each evaluation. The first approach can negatively affect performance, while the second approach puts requires a heavy computational burden. A third option, only recently theoretically studied, is to adaptively discretize the function domain. Even though this approach avoids the extra non-convex optimization costs, the overall computational complexity is still prohibitive. An algorithm such as GP-UCB has a runtime of $O(T^4)$, where $T$ is the number of iterations. In this paper, we introduce Ada-BKB (Adaptive Budgeted Kernelized Bandit), a no-regret Gaussian process optimization algorithm for functions on continuous domains, that provably runs in $O(T^2 d_\text{eff}^2)$, where $d_\text{eff}$ is the effective dimension of the explored space, and which is typically much smaller than $T$. We corroborate our theoretical findings with experiments on synthetic non-convex functions and on the real-world problem of hyper-parameter optimization, confirming the good practical performances of the proposed approach.
翻译:Gausian 进程优化是一个成功的算法类别(例如 GP- UCB ), 以便通过连续评估优化黑盒功能。 但是, 对于连续域的功能, Gaussian 进程优化需要依赖空间的固定离散化, 或者在每次评估中依靠非conx优化子问题的解决办法。 第一种方法可能会对绩效产生消极影响, 而第二种方法则需要沉重的计算负担。 第三个方案, 只是在最近理论上研究过的, 是适应性地分散功能域。 尽管这种方法避免了额外的非convex优化成本,但总体计算复杂性仍然令人望而却步。 GP- UCB 等算法的运行时间为$O( T% 4), 或是一个非conformall 优化的解决方案。 在本文中,我们介绍Ada- BKB (Adaptictripal Pageed Kernationititititit), 一种在连续域功能上不见怪的实用化方法。, 以美元(T2)\ textretimeal-bilalimalimalimalalalaltime) resurviewslate) ex restidustruble $* 。 其中, $(我们通常的不需 ex) ex) exbolview) ex ex ex exbolviewd_ exbild__x expal_ expalbildbal_ exbal_ exbilatebilatebildrobild_ $。