In this paper, we propose a uniformly dithered one-bit quantization scheme for high-dimensional statistical estimation. The scheme contains truncation, dithering, and quantization as typical steps. As canonical examples, the quantization scheme is applied to three estimation problems: sparse covariance matrix estimation, sparse linear regression, and matrix completion. We study both sub-Gaussian and heavy-tailed regimes, with the underlying distribution of heavy-tailed data assumed to possess bounded second or fourth moment. For each model we propose new estimators based on one-bit quantized data. In sub-Gaussian regime, our estimators achieve optimal minimax rates up to logarithmic factors, which indicates that our quantization scheme nearly introduces no additional cost. In heavy-tailed regime, while the rates of our estimators become essentially slower, these results are either the first ones in such one-bit quantized and heavy-tailed setting, or exhibit significant improvements over existing comparable results. Moreover, we contribute considerably to the problems of one-bit compressed sensing and one-bit matrix completion. Specifically, we extend one-bit compressed sensing to sub-Gaussian or even heavy-tailed sensing vectors via convex programming. For one-bit matrix completion, our method is essentially different from the standard likelihood approach and can handle pre-quantization random noise with unknown distribution. Experimental results on synthetic data are presented to support our theoretical analysis.


翻译:在本文中,我们为高维统计估计提出了一个统一差幅一位数的一位数计算办法。 对于每个模型,我们建议根据一位数的量化数据进行新的估算。在亚加西制度下,我们的估算数在对数因素上达到最佳微缩率,这表明我们的量化办法几乎不会带来额外费用。在重尾制度下,我们的估算数比率基本变慢,但这些结果要么是一位数四分制和重尾定定制中的第一个结果,要么是现有可比结果的显著改进。此外,我们在亚加西制度下,我们的估算数在对数因素上达到最佳微缩速率,这表明我们的量化办法几乎不会产生额外费用。在重尾制度下,我们的估算数率基本变慢,但这些结果要么是一位数四分制和重尾裁制数据的基本分布法,要么是一位数级或一位数级的对等量制方法。我们从一个比位数的精确度的精确度分析到一个或一位数级数级程的精确度计算方法,具体地说,我们把一个比级计算法的方法扩大到一个比级计算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年9月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员