Transformer-based large language models (LLMs) have achieved great success with the growing model size. LLMs' size grows by $240\times$ every two years, which outpaces the hardware progress and makes model inference increasingly costly. Model quantization is a promising approach to mitigate the widening gap between LLM size and hardware capacity. However, the existence of outliers, values with significant magnitudes, in LLMs makes existing quantization methods less effective. Prior outlier-aware quantization schemes adopt sparsity encoding techniques to separate outliers from normal values where the process requires global coordination (e.g., a global sparsity coordination list). This incurs complex encoding/decoding hardware logics and an extra orchestration controller for the computation between outlier and normal values. As such, it is not hardware-efficient and hence only achieves sub-optimal quantization benefits. We propose OliVe, an algorithm/architecture co-designed solution that adopts an outlier-victim pair (OVP) quantization and handles outlier values locally with low hardware overheads and high performance gains. The key insight of OliVe is that outliers are important while the normal values next to them are not. Thus those normal values (called victims) can be sacrificed to accommodate outliers. This enables a memory-aligned OVP encoding scheme, which can be efficiently integrated to the existing hardware accelerators like systolic array and tensor core. As a result, OliVe-based accelerator surpasses the existing outlier-aware accelerator, GOBO, by 4.5$\times$ speedup and 4.0$\times$ energy reduction, respectively, with a superior model accuracy.


翻译:基于Transformer的大型语言模型(LLM)以其不断增长的模型大小取得了巨大成功。每两年LLM的大小增加240倍,这超过了硬件进展,使得模型推理日益昂贵。模型量化是缓解LLM大小和硬件容量差距的有前途的方法。然而,LLM中存在离群值,即具有显着大小的值,这使得现有的量化方法效果较差。之前的离群点感知量化方案采用稀疏编码技术将离群点与正常值分开,该过程需要全局协调(例如全局稀疏坐标列表)。这会带来复杂的编码/解码硬件逻辑以及计算离群值与正常值之间的额外编排控制器。因此,它不是硬件有效的,因此只能实现次优量化效益。我们提出了OliVe,一种算法/架构协同设计解决方案,采用离群点-受害者对(OVP)量化并使用低硬件开销和高性能增益处理异常值。 OliVe的关键见解是,离群值很重要,而其旁边的正常值却不重要。因此,可以牺牲那些正常值(称为受害者)以容纳离群值。这使得可以实现内存对齐的OVP编码方案,并可以有效地集成到现有的硬件加速器(例如系统阵列和张量核心)中。结果,基于OliVe的加速器在模型准确性方面优于现有的离群点感知加速器GOBO,速度提高了4.5倍,能量降低了4.0倍。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
88+阅读 · 2021年6月29日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
为什么有些模型FLOPs很低,推理速度却很慢?
极市平台
14+阅读 · 2020年4月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
119+阅读 · 2022年4月21日
专知会员服务
88+阅读 · 2021年6月29日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
为什么有些模型FLOPs很低,推理速度却很慢?
极市平台
14+阅读 · 2020年4月27日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员