The support set is a key to providing conditional prior for fast adaption of the model in few-shot tasks. But the strict form of support set makes its construction actually difficult in practical application. Motivated by ANIL, we rethink the role of adaption in the feature extractor of CNAPs, which is a state-of-the-art representative few-shot method. To investigate the role, Almost Zero-Shot (AZS) task is designed by fixing the support set to replace the common scheme, which provides corresponding support sets for the different conditional prior of different tasks. The AZS experiment results infer that the adaptation works little in the feature extractor. However, CNAPs cannot be robust to randomly selected support sets and perform poorly on some datasets of Meta-Dataset because of its scattered mean embeddings responded by the simple mean operator. To enhance the robustness of CNAPs, Canonical Mean Filter (CMF) module is proposed to make the mean embeddings intensive and stable in feature space by mapping the support sets into a canonical form. CMFs make CNAPs robust to any fixed support sets even if they are random matrices. This attribution makes CNAPs be able to remove the mean encoder and the parameter adaptation network at the test stage, while CNAP-CMF on AZS tasks keeps the performance with one-shot tasks. It leads to a big parameter reduction. Precisely, 40.48\% parameters are dropped at the test stage. Also, CNAP-CMF outperforms CNAPs in one-shot tasks because it addresses inner-task unstable performance problems. Classification performance, visualized and clustering results verify that CMFs make CNAPs better and simpler.


翻译:支持设置是让模型快速适应少数任务的关键。 但严格的支持形式使得其构建在实际应用中实际上困难重重。 在 ANIL 的推动下, 我们重新思考了在 CNAPs 特性提取器中适应功能的作用, 这是一种最先进的具有代表性的少发球方法。 为了调查其作用, 几乎零热( AZS) 任务的设计方法是固定支持设置以取代共同计划, 它为不同任务之前的不同条件提供相应的支持参数。 AZS 实验显示, 适应在功能提取器中几乎没有多少实际应用。 但是, 受 ANIL 的激励, 我们重新思考了 CNAPs 在 C- Dataset 特性提取器中适应作用的作用。 为了提高 CNAPs 的稳健性能, 提议Cononon- mortal Fild (CMF) 模块, 通过将支持设置为 CONIMIS 格式, CMUS 使 CMS 的直观性能让 CAMS 级测试任务升级。

0
下载
关闭预览

相关内容

专知会员服务
124+阅读 · 2020年9月8日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月15日
Arxiv
13+阅读 · 2022年1月20日
Arxiv
21+阅读 · 2020年10月11日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
13+阅读 · 2019年11月14日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员