We show fixed-parameter tractability of the Directed Multicut problem with three terminal pairs (with a randomized algorithm). This problem, given a directed graph $G$, pairs of vertices (called terminals) $(s_1,t_1)$, $(s_2,t_2)$, and $(s_3,t_3)$, and an integer $k$, asks to find a set of at most $k$ non-terminal vertices in $G$ that intersect all $s_1t_1$-paths, all $s_2t_2$-paths, and all $s_3t_3$-paths. The parameterized complexity of this case has been open since Chitnis, Cygan, Hajiaghayi, and Marx proved fixed-parameter tractability of the 2-terminal-pairs case at SODA 2012, and Pilipczuk and Wahlstr\"{o}m proved the W[1]-hardness of the 4-terminal-pairs case at SODA 2016. On the technical side, we use two recent developments in parameterized algorithms. Using the technique of directed flow-augmentation [Kim, Kratsch, Pilipczuk, Wahlstr\"{o}m, STOC 2022] we cast the problem as a CSP problem with few variables and constraints over a large ordered domain.We observe that this problem can be in turn encoded as an FO model-checking task over a structure consisting of a few 0-1 matrices. We look at this problem through the lenses of twin-width, a recently introduced structural parameter [Bonnet, Kim, Thomass\'{e}, Watrigant, FOCS 2020]: By a recent characterization [Bonnet, Giocanti, Ossona de Mendes, Simon, Thomass\'{e}, Toru\'{n}czyk, STOC 2022] the said FO model-checking task can be done in FPT time if the said matrices have bounded grid rank. To complete the proof, we show an irrelevant vertex rule: If any of the matrices in the said encoding has a large grid minor, a vertex corresponding to the ``middle'' box in the grid minor can be proclaimed irrelevant -- not contained in the sought solution -- and thus reduced.


翻译:我们用三个终端对立方程式( 随机的算法 ) 来显示直接多角问题的固定参数可感性 。 问题在于一个直接的图形$G$, 双螺旋( 所谓的终端)$[ 1, t_ 1美元, $( 2, t_ 2美元), $( 3, t_ 3美元), 和整数美元, 要求找到一套最多为美元的非终点的垂直值 $G$, 它交叉了所有 $ 1t_ 1 美元 。 这个问题在于一个直接的图形 Go, 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直径 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直 直

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
2+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员