In this paper, we revisit the smooth and strongly-convex-strongly-concave minimax optimization problem. Zhang et al. (2021) and Ibrahim et al. (2020) established the lower bound $\Omega\left(\sqrt{\kappa_x\kappa_y} \log \frac{1}{\epsilon}\right)$ on the number of gradient evaluations required to find an $\epsilon$-accurate solution, where $\kappa_x$ and $\kappa_y$ are condition numbers for the strong convexity and strong concavity assumptions. However, the existing state-of-the-art methods do not match this lower bound: algorithms of Lin et al. (2020) and Wang and Li (2020) have gradient evaluation complexity $\mathcal{O}\left( \sqrt{\kappa_x\kappa_y}\log^3\frac{1}{\epsilon}\right)$ and $\mathcal{O}\left( \sqrt{\kappa_x\kappa_y}\log^3 (\kappa_x\kappa_y)\log\frac{1}{\epsilon}\right)$, respectively. We fix this fundamental issue by providing the first algorithm with $\mathcal{O}\left(\sqrt{\kappa_x\kappa_y}\log\frac{1}{\epsilon}\right)$ gradient evaluation complexity. We design our algorithm in three steps: (i) we reformulate the original problem as a minimization problem via the pointwise conjugate function; (ii) we apply a specific variant of the proximal point algorithm to the reformulated problem; (iii) we compute the proximal operator inexactly using the optimal algorithm for operator norm reduction in monotone inclusions.
翻译:在本文中, 我们重新审视平滑且强烈的混凝土缩略图优化问题。 张等人( 2021年) 和易卜拉欣等人( 202020年) 建立了较低的约束值 $\ Omega\ left (\ qrt_ kapa_ x kappa_ y}\log\ frac{ 1\\ unsilon_ right), 找到 $epsilon$- coil 解决方案所需的梯度评估数量 。 $\ kapa_ xx lical_ licalax; $\ littleab_ lical_ lical_ lical_ lical_ lical_ lical_ lical_ lical_ lical_ lical_ lical_ littlex_ lixal_ lixal_ lixal_ lical_ lix lixal_ littlegal_ ma_ maxal_ ma_ max_ max_ max_ max_ max_ max_ max_ max_ maxal_ max_ max max max max_ ma_ maxxxxxxiblexxxxxx max max max ibil_ ibil_ maxxibil_ maxx max max max maxxx max maxx max max max max max max max ibil_ ibil_ max max maxx max max max max_ max_ max_ ma_ ma_ ma_ ma ma ma ma ma ma ma_ ma_ max_ maxxxxxxxxxxxxxxxxxxx max max maxxx li