The fractional Laplacian has been strongly studied during past decades. In this paper we present a different approach for the associated Dirichlet problem, using recent deep learning techniques. In fact, intensively PDEs with a stochastic representation have been understood via neural networks, overcoming the so-called curse of dimensionality. Among these equations one can find parabolic ones in $\mathbb{R}^d$ and elliptic in a bounded domain $D \subset \mathbb{R}^d$. In this paper we consider the Dirichlet problem for the fractional Laplacian with exponent $\alpha \in (1,2)$. We show that its solution, represented in a stochastic fashion can be approximated using deep neural networks. We also check that this approximation does not suffer from the curse of dimensionality.
翻译:在过去几十年中, 已经对分数拉普拉西亚进行了强烈的研究 。 在本文中, 我们使用最近的深层学习技术, 对相关的 Dirichlet 问题提出了不同的方法 。 事实上, 通过神经网络, 已经通过神经网络理解了 密集的具有随机代表的 PDE, 克服了所谓的维度诅咒 。 在这些方程式中, 人们可以找到 $\ mathbb{R ⁇ d$ 和 extliptic 的抛物线, $D\ subset\ mathbb{R ⁇ d$ 。 在本文中, 我们考虑的是 Exponent $\ alpha\ in ( 1, 2 ) 的分数拉普拉奇 的 Dirichlet 问题 。 我们展示了它以深层神经网络代表的分解方式的解决方案可以近似 。 我们还检查这一近似值是否不受 维度 的诅咒 。