The discrete distribution of the length of longest increasing subsequences in random permutations of order $n$ is deeply related to random matrix theory. In a seminal work, Baik, Deift and Johansson provided an asymptotics in terms of the distribution of the largest level of the large matrix limit of GUE. As a numerical approximation, however, this asymptotics is inaccurate for small lengths and has a slow convergence rate, conjectured to be just of order $n^{-1/3}$. Here, we suggest a different type of approximation, based on Hayman's generalization of Stirling's formula. Such a formula gives already a couple of correct digits of the length distribution for $n$ as small as $20$ but allows numerical evaluations, with a uniform error of apparent order $n^{-3/4}$, for $n$ as large as $10^{12}$; thus closing the gap between a table of exact values (that has recently been compiled for up to $n=1000$) and the random matrix limit. Being much more efficient and accurate than Monte-Carlo simulations for larger $n$, the Stirling-type formula allows for a precise numerical understanding of the first few finite size correction terms to the random matrix limit, a study that has recently been initiated by Forrester and Mays, who visualized the form of the first such term. We display also the second one, of order $n^{-2/3}$, and derive (heuristically) expansions of expected value and variance of the length, exhibiting several more terms than previously known.
翻译:以随机变换方式随机增加最长的次序列长度的离散分布与随机基质理论密切相关。 在一项开创性工作中,Baik、Deift和Johansson提供了GUE大矩阵限制最大值最大值分布的零点数。 然而,作为一个数字近似值,这种零点数对于小段长度来说是不准确的,并具有缓慢的趋同率,因此推测只是顺序 $ ⁇ -1/3 美元。在这里,根据Hayman对 Stirling 公式的概括化,我们建议了一种不同的近似值。在一项开创性工作中,Baik、Deift和Johansson提供了长度分布最小于20美元的几张正数数字,但允许进行数字评价,但有一个统一的误差,其大到10 ⁇ 12 美元;因此缩小了精确值表(最近为美元=1 000美元)与随机矩阵限制之间的差。 最有效和最准确的显示性数字值数字值数字值数字值数字值,最近也比Met-Carlos 3 3 条件的第一次显示的精确和最精确的直径直径直径直径模型的5 的模型, 的模型的精确的模型的模拟可以得出。