We initiate the study of parameterized complexity of $\textsf{QMA}$ problems in terms of the number of non-Clifford gates in the problem description. We show that for the problem of parameterized quantum circuit satisfiability, there exists a classical algorithm solving the problem with a runtime scaling exponentially in the number of non-Clifford gates but only polynomially with the system size. This result follows from our main result, that for any Clifford + $t$ $T$-gate quantum circuit satisfiability problem, the search space of optimal witnesses can be reduced to a stabilizer subspace isomorphic to at most $t$ qubits (independent of the system size). Furthermore, we derive new lower bounds on the $T$-count of circuit satisfiability instances and the $T$-count of the $W$-state assuming the classical exponential time hypothesis ($\textsf{ETH}$). Lastly, we explore the parameterized complexity of the quantum non-identity check problem.
翻译:我们开始研究在问题描述中非Clifford门数的参数复杂性问题。我们表明,对于参数化量子电路可控性问题,存在着一种典型的算法来解决问题,非Clifford门数的运行时间指数化比例指数化,但仅与系统大小相加。这源于我们的主要结果,即对于任何克里福德+t$t$t$g的量子电路可控性问题,最佳证人的搜索空间可以缩小为稳定器子空间,最多为$tqubs(视系统大小而定)。此外,我们从假设古典指数时间假设($\ textfsf{ETH}$美元)的情况下假设的美元美元和美元对美元的计算值中得出了新的较低界限。最后,我们探讨了量非身份检查问题的参数复杂性。