We consider optimizing a function network in the noise-free grey-box setting with RKHS function classes, where the exact intermediate results are observable. We assume that the structure of the network is known (but not the underlying functions comprising it), and we study three types of structures: (1) chain: a cascade of scalar-valued functions, (2) multi-output chain: a cascade of vector-valued functions, and (3) feed-forward network: a fully connected feed-forward network of scalar-valued functions. We propose a sequential upper confidence bound based algorithm GPN-UCB along with a general theoretical upper bound on the cumulative regret. For the Mat\'ern kernel, we additionally propose a non-adaptive sampling based method along with its theoretical upper bound on the simple regret. We also provide algorithm-independent lower bounds on the simple regret and cumulative regret, showing that GPN-UCB is near-optimal for chains and multi-output chains in broad cases of interest.
翻译:我们考虑在无噪音的灰箱设置中优化使用RKHS函数等级的功能网络,其精确的中间结果是可以观察的。我们假设网络的结构是已知的(但不包括其中的基本功能),我们研究三类结构:(1) 链条:标价函数的级联,(2) 多产出链:矢量价值函数的级联,(3) 向进网络:一个完全连接的标价函数的向前反馈网络。我们建议采用基于GPN-UCB的连续高置信约束算法,同时提出累积遗憾的一般理论上限。对于 Mat\'ern内核,我们又建议采用非适应性取样法,同时提出简单的遗憾理论上限。我们还根据简单的遗憾和累积遗憾提供低限算法,表明GPN-UCB在广泛感兴趣的情况下是链和多输出链的近最佳方法。