We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equivalence, which says that data can not help to discriminate network structures that encode the same assertions of conditional independence. We describe the constructions that follow from these assumptions, and also present a method for directly computing the marginal likelihood of a random sample with no missing observations. Also, we show how these assumptions lead to a general framework for characterizing parameter priors of multivariate distributions.
翻译:我们为了解巴伊西亚网络的参数和结构,制定了建立可能性和参数前程的简单方法;特别是,我们引入了几种假设,允许从一小套评估中为众多巴伊西亚网络结构建立可能性和参数前程;最显著的假设是可能性等值,即数据不能帮助歧视将同样的有条件独立声明编码的网络结构;我们描述了这些假设的构造,并提供了直接计算随机抽样的边际可能性的方法,而没有遗漏观察;此外,我们还展示了这些假设如何导致一个将多变量分布参数前程定性的一般框架。