We develop simple methods for constructing likelihoods and parameter priors for learning about the parameters and structure of a Bayesian network. In particular, we introduce several assumptions that permit the construction of likelihoods and parameter priors for a large number of Bayesian-network structures from a small set of assessments. The most notable assumption is that of likelihood equivalence, which says that data can not help to discriminate network structures that encode the same assertions of conditional independence. We describe the constructions that follow from these assumptions, and also present a method for directly computing the marginal likelihood of a random sample with no missing observations. Also, we show how these assumptions lead to a general framework for characterizing parameter priors of multivariate distributions.


翻译:我们为了解巴伊西亚网络的参数和结构,制定了建立可能性和参数前程的简单方法;特别是,我们引入了几种假设,允许从一小套评估中为众多巴伊西亚网络结构建立可能性和参数前程;最显著的假设是可能性等值,即数据不能帮助歧视将同样的有条件独立声明编码的网络结构;我们描述了这些假设的构造,并提供了直接计算随机抽样的边际可能性的方法,而没有遗漏观察;此外,我们还展示了这些假设如何导致一个将多变量分布参数前程定性的一般框架。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Bayesian learning of forest and tree graphical models
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Bayesian learning of forest and tree graphical models
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员