We develop a convex analytic approach to analyze finite width two-layer ReLU networks. We first prove that an optimal solution to the regularized training problem can be characterized as extreme points of a convex set, where simple solutions are encouraged via its convex geometrical properties. We then leverage this characterization to show that an optimal set of parameters yield linear spline interpolation for regression problems involving one dimensional or rank-one data. We also characterize the classification decision regions in terms of a kernel matrix and minimum $\ell_1$-norm solutions. This is in contrast to Neural Tangent Kernel which is unable to explain predictions of finite width networks. Our convex geometric characterization also provides intuitive explanations of hidden neurons as auto-encoders. In higher dimensions, we show that the training problem can be cast as a finite dimensional convex problem with infinitely many constraints. Then, we apply certain convex relaxations and introduce a cutting-plane algorithm to globally optimize the network. We further analyze the exactness of the relaxations to provide conditions for the convergence to a global optimum. Our analysis also shows that optimal network parameters can be also characterized as interpretable closed-form formulas in some practically relevant special cases.


翻译:我们开发了分析两层ReLU网络的精密宽度分析分析方法。 我们首先证明常规训练问题的最佳解决方案可以被描述为 convex 组合的极端点, 可以通过其等离子几何特性鼓励简单的解决方案。 然后我们利用这一特征来显示, 一套最佳参数可以产生一个维或一级数据的回归问题的线性样插图。 我们还用内核矩阵和最小$\ell_1$1美元- 诺姆解决方案来描述分类决策区域。 这与无法解释有限宽度网络预测的 Neural Tangnel 相比。 我们的 convex 几何地测量特征还可以提供隐藏神经作为自动编码的直观解释。 在更高层面, 我们显示, 训练问题可以被描绘成一个有无限限制的有限维线性锥体问题。 然后, 我们应用某些convex 放松和切换机算法来优化全球网络。 我们进一步分析这些变迁的准确性, 以提供实际封闭的公式的精确性条件, 也能够显示一个具有最佳模型特征的分析。

0
下载
关闭预览

相关内容

【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月22日
Arxiv
7+阅读 · 2020年6月29日
VIP会员
相关VIP内容
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
【KDD2020】最小方差采样用于图神经网络的快速训练
专知会员服务
27+阅读 · 2020年7月13日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
神经网络学习率设置
机器学习研究会
4+阅读 · 2018年3月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员