We consider the problem of parameter estimation for a stochastic McKean-Vlasov equation, and the associated system of weakly interacting particles. We study two cases: one in which we observe multiple independent trajectories of the McKean-Vlasov SDE, and another in which we observe multiple particles from the interacting particle system. In each case, we begin by establishing consistency and asymptotic normality of the (approximate) offline maximum likelihood estimator, in the limit as the number of observations $N\rightarrow\infty$. We then propose an online maximum likelihood estimator, which is based on a continuous-time stochastic gradient ascent scheme with respect to the asymptotic log-likelihood of the interacting particle system. We characterise the asymptotic behaviour of this estimator in the limit as $t\rightarrow\infty$, and also in the joint limit as $t\rightarrow\infty$ and $N\rightarrow\infty$. In these two cases, we obtain a.s. or $\mathbb{L}_1$ convergence to the stationary points of a limiting contrast function, under suitable conditions which guarantee ergodicity and uniform-in-time propagation of chaos. We also establish, under the additional condition of global strong concavity, $\mathbb{L}_2$ convergence to the unique maximiser of the asymptotic log-likelihood of the McKean-Vlasov SDE, with an asymptotic convergence rate which depends on the learning rate, the number of observations, and the dimension of the non-linear process. Our theoretical results are supported by two numerical examples, a linear mean field model and a stochastic opinion dynamics model.
翻译:我们考虑的是Stochastecist McKan-Vlasov 等式的参数估计问题, 以及相关微弱互动质粒子系统的关联系统。 我们研究了两个案例: 一个我们观测了McKan- Vlasov SDE 的多重独立轨迹, 另一个我们观察了互动粒子系统中的多个粒子。 在每一个案例中, 我们首先确定( 近似) 离线最大概率估测器的一致性和无损正常度, 其限为观测量 $N\rightrrowr=infty$ 。 然后我们提出一个在线最大可能性非概率估测算器。 在这两个案例中, 我们以持续时间的对焦度梯度梯度梯度梯度梯度的梯度性梯度计划为基础。 我们把这个估测器的偏度描述为 $tt\rightarrowrorrowrorfty $ral-rentralralral2ral_infty$。 在两个案例中, 我们的观测中, 我们获得了一个直径的正值的正值的正值的正值的正值的正值的正值轨值值, 。