Procedural Content Generation (PCG) algorithms provide a technique to generate complex and diverse environments in an automated way. However, while generating content with PCG methods is often straightforward, generating meaningful content that reflects specific intentions and constraints remains challenging. Furthermore, many PCG algorithms lack the ability to generate content in an open-ended manner. Recently, Large Language Models (LLMs) have shown to be incredibly effective in many diverse domains. These trained LLMs can be fine-tuned, re-using information and accelerating training for new tasks. In this work, we introduce MarioGPT, a fine-tuned GPT2 model trained to generate tile-based game levels, in our case Super Mario Bros levels. We show that MarioGPT can not only generate diverse levels, but can be text-prompted for controllable level generation, addressing one of the key challenges of current PCG techniques. As far as we know, MarioGPT is the first text-to-level model. We also combine MarioGPT with novelty search, enabling it to generate diverse levels with varying play-style dynamics (i.e. player paths). This combination allows for the open-ended generation of an increasingly diverse range of content.
翻译:程序内容生成算法提供了一种以自动化方式生成复杂和多样化环境的技术。然而,虽然以PCG方法生成内容往往直截了当,但生成反映具体意图和限制的有意义的内容仍具有挑战性。此外,许多PCG算法缺乏以开放方式生成内容的能力。最近,大语言模型(LLMS)在许多不同领域表现出了惊人的效力。这些经过培训的LLMS可以做微调,重新使用信息,并加速新任务的培训。在这项工作中,我们引入了马里奥GPT,这是一个经过精细调整的GPT2模型,以生成基于瓷盘的游戏级别,就我们的情况而言,超级MarioGPT可生成有意义的内容。我们显示,MarioGPT不仅能够生成不同级别,而且能够为可控的级别生成文本,从而应对当前PCG技术的关键性挑战之一。据我们所知,MarioGPT是第一个文本到级别模型。我们还将马里奥GPT与新搜索结合起来,从而能够生成不同层次的游戏风格动态(i.e. 玩家路径) 。这种组合使得开放的一代内容的范围越来越多样化。